scispace - formally typeset
Search or ask a question

Showing papers on "Heterojunction published in 2021"


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper constructed 2D carbon nitride nanosheets with varying levels of boron dopants and nitrogen defects, which can act as either H2 or O2-evolving photocatalysts.
Abstract: Photocatalytic overall water splitting can be achieved using Z-scheme systems that mimic natural photosynthesis by combining dissimilar semiconductors in series. However, coupling well-suited H2- and O2-evolving components remains challenging. Here, we fabricate a Z-scheme system for photocatalytic overall water splitting based on boron-doped, nitrogen-deficient carbon nitride two-dimensional (2D) nanosheets. We prepare ultrathin carbon nitride nanosheets with varying levels of boron dopants and nitrogen defects, which leads to nanosheets that can act as either H2- or O2-evolving photocatalysts. Using an electrostatic self-assembly strategy, the nanosheets are coupled to obtain a 2D/2D polymeric heterostructure. Owing to their ultrathin nanostructures, strong interfacial interaction and staggered band alignment, a Z-scheme route for efficient charge-carrier separation and transfer is realized. The obtained heterostructure achieves stoichiometric H2 and O2 evolution in the presence of Pt and Co(OH)2 co-catalysts, and the solar-to-hydrogen efficiency reaches 1.16% under one-sun illumination. Splitting water using suspensions of particulate carbon nitride-based photocatalysts may be a cheap way to produce hydrogen, but efficiencies have remained low. Now, Shen and colleagues use doped carbon nitride-based Z-scheme heterostructures to split water with a solar-to-hydrogen efficiency of 1.1% in the presence of metal-based co-catalysts.

632 citations


Journal ArticleDOI
TL;DR: In this article, a solvent evaporation induced self-assembly method was employed to prepare a novel S-scheme heterojunction composite by combining sulfur-doped porous graphite carbon nitride (S-pCN) with tungsten oxide (WO2.72) semiconductors which manifest effective interface contact and excellent photocatalytic performance.

404 citations


Journal ArticleDOI
TL;DR: In this paper, a pyrene-based conjugated polymer is synthesized via the typical Suzuki-Miyaura reactions, and then employed as a substrate to anchor CdS nanocrystals.
Abstract: Inspired by natural photosynthesis, constructing inorganic/organic heterojunctions is regarded as an effective strategy to design high-efficiency photocatalysts. Herein, a step (S)-scheme heterojunction photocatalyst is prepared by in situ growth of an inorganic semiconductor firmly on an organic semiconductor. A new pyrene-based conjugated polymer, pyrene-alt-triphenylamine (PT), is synthesized via the typical Suzuki-Miyaura reactions, and then employed as a substrate to anchor CdS nanocrystals. The optimized CdS/PT composite, coupling 2 wt% PT with CdS, exhibits a robust H2 evolution rate of 9.28 mmol h-1 g-1 with continuous release of H2 bubbles, as well as a high apparent quantum efficiency of 24.3%, which is ≈8 times that of pure CdS. The S-scheme charge transfer mechanism between PT and CdS, is systematically demonstrated by photoirradiated Kelvin probe measurement and in situ irradiated X-ray photoelectron spectroscopy analyses. This work provides a protocol for preparing specific S-scheme heterojunction photocatalysts on the basis of inorganic/organic coupling.

369 citations


Journal ArticleDOI
01 Oct 2021-Small
TL;DR: In this paper, a step-scheme core-shell TiO2 @ZnIn2 S4 heterojunction was designed for photocatalytic CO2 reduction. But the performance of the optimized sample was limited by the large specific surface areas and abundant active sites.
Abstract: Reasonable design of efficient hierarchical photocatalysts has gained significant attention. Herein, a step-scheme (S-scheme) core-shell TiO2 @ZnIn2 S4 heterojunction is designed for photocatalytic CO2 reduction. The optimized sample exhibits much higher CO2 photoreduction conversion rates (the sum yield of CO, CH3 OH, and CH4 ) than the blank control, i.e., ZnIn2 S4 and TiO2 . The improved photocatalytic performance can be attributed to the inhibited recombination of photogenerated charge carriers induced by S-scheme heterojunction. The improvement is also attributed to the large specific surface areas and abundant active sites. Meanwhile, S-scheme photogenerated charge transfer mechanism is testified by in situ irradiated X-ray photoelectron spectroscopy, work function calculation, and electron paramagnetic resonance measurements. This work provides an effective strategy for designing highly efficient heterojunction photocatalysts for conversion of solar fuels.

291 citations


Journal ArticleDOI
TL;DR: In this article, a series of sulfur-doped g-C3N4 (SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.

281 citations


Journal ArticleDOI
TL;DR: In this paper, a step-scheme photocatalytic mechanism based on S/Cl-CN/CdSe-D heterostructure was proposed, where the S atom is appropriate to be incorporated into the CN framework to replace N atom, which is beneficial to adjust the band gap.
Abstract: The poor utilization of visible light and the speedy recombination of photoexcited carriers limit the further development of carbon nitride polymer (CN) photocatalysts. It is a valid means for enhancing the photocatalytic ability to ameliorate the electronic and physicochemical properties via modifying the structure of CN. The sulfur- and chlorine-codoped graphite CN (S/Cl-CN) was successfully fabricated with low-cost ammonium chloride and thiourea as precursors. The introduction of Cl atoms will establish interlayer channels to promote interlayer charge migration and up-shifted conduction-band level. S atom is appropriate to be incorporated into the CN framework to replace N atom, which is beneficial to adjust the band gap. Then, inorganic-organic CdSe-diethylenetriamine (D) grown in situ are employed to fabricate a S/Cl-CN/CdSe-D heterojunction. S/Cl-CN/CdSe-D heterojunction exhibits greater hydrogen evolution activity compared to CN, S-CN, Cl-CN, S/Cl-CN, CdSe-D and CN/CdSe-D. Finally, Step-scheme (S-scheme) photocatalytic mechanism based on S/Cl-CN/CdSe-D heterostructure was proposed.

277 citations


Journal ArticleDOI
TL;DR: In this paper, a simple boron (B) doping of C3N4/ZnO was proposed to switch from the Z-scheme to type II.
Abstract: Heterojunction photocatalysts are very promising for solar hydrogen production due to their high efficiency in photo-driven charge generation and separation. A C3N4/ZnO heterostructure nanocomposite harvests a wide range of solar light from the UV and visible regions and retains a high redox potential due to its Z-scheme band structure. However, since both C3N4 and ZnO have sufficiently high conduction band energies to drive hydrogen photoreduction, a type II heterojunction is more beneficial for enhancing the hydrogen production efficiency in the current system. In this study, we first demonstrated the charge transfer mechanism switching from the Z-scheme to type II by simple boron (B) doping of C3N4/ZnO. The doping of C3N4 with low-electronegativity boron increases its Fermi level by 0.4 V, making it even higher than that of ZnO. As a result, the Fermi level alignment of B-doped C3N4 with ZnO causes a reversed band bending direction at the C3N4/ZnO junction. The resultant charge transfer switching from the Z-scheme (C3N4/ZnO) to type II (B-doped C3N4/ZnO) was confirmed by UPS and ESR analysis. Type II B-doped C3N4/ZnO shows a stable, drastic increase in the photocatalytic hydrogen evolution rate, approximately 2.9 times higher than that of undoped C3N4/ZnO. The decreased bandgap energy of B-doped C3N4/ZnO also contributes to an additional improvement in efficiency through enhanced light harvesting. Our work presents a simple but effective strategy to design highly capable heterojunction photocatalysts via charge transfer switching with a doping method.

275 citations


Journal ArticleDOI
TL;DR: In this paper, the authors combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn05Cd05S (ZCS) solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.

256 citations



Journal ArticleDOI
Jinjun Peng1, Jun Shen, Xiaohui Yu1, Hua Tang1, Zulfiqar1, Qinqin Liu1 
TL;DR: In this article, an LSPR-enhanced 0D/2D CdS/MoO3−x heterojunction has been synthesized by the growth of 0D cdS nanoparticles on 2D plasmonic MoO 3−x elliptical nanosheets via a simple coprecipitation method.

245 citations


Journal ArticleDOI
TL;DR: In this paper, hierarchical ZnMn2O4/ZnO nanofibers were prepared as photocatalysts by electrospinning and calcination, and the results showed that the charge separation efficiency in the composite was significantly elevated.

Journal ArticleDOI
TL;DR: In this article, a Z-scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction was constructed using an impregnation-hydrothermal method.
Abstract: Heterojunctions have attracted considerable attention for efficiently utilizing solar energy and improving conversion efficiency during pollutant degradation. Herein, carbon nitride and hematite (α-Fe2O3) are used to prepare a Z-scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction using an impregnation-hydrothermal method. The unique 2D/2D structure has a high interfacial area and widely-dispersed active sites. The energy band structure of the Z-scheme heterojunction leads to broad visible-light absorption and promotes charge transfer. Optimizing the content of the α-Fe2O3 precursor in composite leads to a maximum efficiency of 60.8% for the removal of 600 ppb of NO, which is approximately 1.78 times that of g-C3N4 (34.2%). The photocatalytic performance is greatly promoted because of the formation of the heterojunction and the strong interfacial action between g-C3N4 nanosheets and α-Fe2O3 nanoplates. Cycling experiments verify that the α-Fe2O3/g-C3N4 heterojunction has good stability and reusability. The α-Fe2O3/g-C3N4 heterojunction therefore has great potential in sustainable and efficient pollutant degradation.

Journal ArticleDOI
25 May 2021
TL;DR: In this article, a band-engineered van der Waals heterostructures were used to construct visible and mid-wavelength infrared unipolar barrier photodetectors.
Abstract: Unipolar barrier structures are used to suppress dark current in photodetectors by blocking majority carriers. Designing unipolar barriers with conventional materials is challenging due to the strict requirements of lattice and band matching. Two-dimensional materials have self-passivated surfaces and tunable band structures, and can thus be used to design unipolar barriers in which lattice mismatch and interface defects are avoided. Here, we show that band-engineered van der Waals heterostructures can be used to build visible and mid-wavelength infrared unipolar barrier photodetectors. Our nBn unipolar barrier photodetectors, which are based on a tungsten disulfide/hexagonal boron nitride/palladium diselenide heterostructure, exhibit a low dark current of 15 pA, a photocurrent of 20 μA and a detectivity of 2.7 × 1012 cm Hz1/2 W−1. Our pBp unipolar barrier photodetectors, which are based on a black phosphorus/molybdenum disulfide/graphene heterostructure, exhibit a room-temperature detectivity of 2.3 × 1010 cm Hz1/2 W−1 in the mid-wavelength infrared region under blackbody radiation. The pBp devices also show a dichroic ratio of 4.9 under blackbody radiation, and a response time of 23 μs under 2 μm laser illumination. Band-engineered van der Waals heterostructures that block dark current without suppressing photocurrent can be used to build detectors with high room-temperature detectivity for visible light and blackbody infrared light.

Journal ArticleDOI
TL;DR: In this paper, a self-powered, high-performance Ti3 C2 Tx/GaN van der Waals heterojunction (vdWH)-based ultraviolet photodiode is reported.
Abstract: A self-powered, high-performance Ti3 C2 Tx MXene/GaN van der Waals heterojunction (vdWH)-based ultraviolet (UV) photodiode is reported. Such integration creates a Schottky junction depth that is larger than the UV absorption depth to sufficiently separate the photoinduced electron/hole pairs, boosting the peak internal quantum efficiency over the unity and the external quantum efficiency over 99% under weak UV light without bias. The proposed Ti3 C2 Tx /GaN vdWH UV photodiode demonstrates pronounced photoelectric performances working in self-powered mode, including a large responsivity (284 mA W-1 ), a high specific detectivity (7.06 × 1013 Jones), and fast response speed (rise/decay time of 7.55 µs/1.67 ms). Furthermore, the remarkable photovoltaic behavior leads to an impressive power conversion efficiency of 7.33% under 355 nm UV light illumination. Additionally, this work presents an easy-processing spray-deposition route for the fabrication of large-area UV photodiode arrays that exhibit highly uniform cell-to-cell performance. The MXene/GaN photodiode arrays with high-efficiency and self-powered ability show high potential for many applications, such as energy-saving communication, imaging, and sensing networks.


Journal ArticleDOI
TL;DR: In this paper, a new strategy for the synthesis of 2D porous MoP/Mo2 N heterojunction nanosheets based on pyrolysis of a 2D [PMo12 O40 ]3-melamine (PMo 12 -MA) nanosheet precursor from a polyethylene glycol (PEG)-mediated assembly route is presented.
Abstract: Herein, we present a new strategy for the synthesis of 2D porous MoP/Mo2 N heterojunction nanosheets based on the pyrolysis of 2D [PMo12 O40 ]3- -melamine (PMo12 -MA) nanosheet precursor from a polyethylene glycol (PEG)-mediated assembly route. The heterostructure nanosheets are ca. 20 nm thick and have plentiful pores ( 55 mA cm-2 in neutral medium and >190 mA cm-2 in alkaline medium.

Journal ArticleDOI
TL;DR: In this paper, the formation of space charge regions, built-in electric field and potential barriers at the interface regions of thermally equilibrated heterojunctions are analyzed in details.

Journal ArticleDOI
Shanshan Wu1, Xiang Yu1, Junlei Zhang1, Yuanming Zhang1, Yi Zhu1, Mingshan Zhu1 
TL;DR: In this paper, a step-scheme heterojunction with superior redox ability is proposed for environmental pollution control, which shows enhanced photocatalytic performance in removing aqueous diclofenac and gaseous nitric oxide (NO) under visible light irradiation.

Journal ArticleDOI
TL;DR: In this paper, a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction was developed for efficient charge transfer and mechanical adhesion.
Abstract: All-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion The champion CsPbI3 quantum dot solar cell has an efficiency of 151% (stabilized power output of 1461%), which is among the highest report to date Building on this strategy, we further demonstrate a highest efficiency of 123% in flexible quantum dot photovoltaics

Journal ArticleDOI
TL;DR: In this paper, a lead-free halide perovskite Z-scheme and type-II photocatalytic systems for the regulation products selectivity of CO2 reduction reaction are presented.
Abstract: Solar-energy-driven CO2 conversion into value-added chemical fuels holds great potential renewable energy generation. However, most of the photocatalysts facilitate a two-electron reduction process producing CO, hard for the eight-electron CH4 production pathways which can stockpile more solar energy for further utilization. Herein, we developed an in situ assembly strategy to fabricate the lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system in toluene and the Cs2AgBiBr6@g-C3N4 type-II heterojunction structure in CH2Cl2. By combining the reducing ability of the conduction band of g-C3N4 and the oxidizing ability of the valence band of Cs2AgBiBr6 perovskite, this Z-scheme system exhibits superior CH4 production in photocatalytic CO2 reduction, in contrast to the high CO selectivity for the heterojunction photocatalysts, which is 10-fold and 16-fold higher than that of pure g-C3N4 and pure CABB, respectively. The stability (four consecutive photocatalytic cycles in solvent methanol as sacrificial reagent without obvious decrease of efficiency) and the mechanism (the prominent activity and the high CH4 production selectivity boosted by Z-scheme system) were demonstrated. In this work, the first report for constructing lead-free halide perovskite Z-scheme and type-II photocatalytic systems for the regulation products selectivity of CO2 reduction reaction provides a promising strategy for the fabrication other types of inorganic/organic heterojunction systems.

Journal ArticleDOI
23 May 2021-ACS Nano
TL;DR: In this article, an ultrabroadband two-dimensional tungsten disulfide (WS2) heterojunction photodetector is presented, where the defect engineering and interface passivation are performed.
Abstract: Broadband photodetectors are of great importance for numerous optoelectronic applications. Two-dimensional (2D) tungsten disulfide (WS2), an important family member of transition-metal dichalcogenides (TMDs), has shown great potential for high-sensitivity photodetection due to its extraordinary properties. However, the inherent large bandgap of WS2 and the strong interface recombination impede the actualization of high-sensitivity broadband photodetectors. Here, we demonstrate the fabrication of an ultrabroadband WS2/Ge heterojunction photodetector through defect engineering and interface passivation. Thanks to the narrowed bandgap of WS2 induced by the vacancy defects, the effective surface modification with an ultrathin AlOx layer, and the well-designed vertical n-n heterojunction structure, the WS2/AlOx/Ge photodetector exhibits an excellent device performance in terms of a high responsivity of 634.5 mA/W, a large specific detectivity up to 4.3 × 1011 Jones, and an ultrafast response speed. Significantly, the device possesses an ultrawide spectral response spanning from deep ultraviolet (200 nm) to mid-wave infrared (MWIR) of 4.6 μm, along with a superior MWIR imaging capability at room temperature. The detection range has surpassed the WS2-based photodetectors in previous reports and is among the broadest for TMD-based photodetectors. Our work provides a strategy for the fabrication of high-performance ultrabroadband photodetectors based on 2D TMD materials.

Journal ArticleDOI
TL;DR: This study synthesized a hollow tubular CN isotype heterojunction with high visible-light photocatalytic performance and provided a theoretical basis for CN isotypes heterojunctions.

Journal ArticleDOI
TL;DR: The present work demonstrates a very high potential of the 3D hierarchical ZnO/Bi2MoO6 heterojunctions for environmental remediation.

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional graphitic carbon nitride (PCN)/Ti3C2 MXene interface heterojunction with strong interfacial interactions was proposed for solar-to-hydrogen conversion.

Journal ArticleDOI
TL;DR: In this article, a Z-scheme heterojunction CeO2/g-C3N4 nanocomposites were synthesized by simply direct ball milling at three different mass ratios (3:7, 7:3, and 9:1).

Journal ArticleDOI
TL;DR: In this article, the authors provide a review on heterojunction catalysts in electrocatalytic water splitting, and discuss the catalytical mechanisms in HER and OER processes respectively.

Journal ArticleDOI
TL;DR: Characterizations and theoretical calculations together confirm a strong interfacial charge transfer exists between the interlayer in AgI and BiSbO4 by the formation of Ag‒O bond, making O atoms obtain rich free electrons from Ag atoms of AgI, thus forming an ultrahigh electron transfer tunnel, and ultimately accelerating the separation of photoinduced electrons.

Journal ArticleDOI
TL;DR: In this paper, a facile solvothermal method was developed to manufacture a unique Cu3P-ZSO-CN p-n-n heterojunction photocatalyst for the photodegradation of broad-spectrum antibiotics under visible light irradiation.

Journal ArticleDOI
TL;DR: In this article, the NiSe2/FeSe2 p-p heterojunction was constructed via a simple selenization method for both oxygen evolution reaction (OER) and urea oxidation reaction (UOR).
Abstract: Heterogeneous electrocatalysis usually involves the charge transfer between the surface of electrocatalysts and corresponding reactants. Thus, modulating the surface electron density of electrocatalysts is an effective strategy to boost the electrocatalytic activity of targeted reactions. Herein, the NiSe2/FeSe2 p-p heterojunction is constructed via a simple selenization method for both oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The designed NiSe2/FeSe2 electrocatalyst exhibits a superior activity towards OER, which only requires a low overpotential of 256 mV to reach a current density of 10 mA cm−2, and surpasses other selenides and even the state-of-the-art RuO2. Impressively, when employed as the UOR electrode, the NiSe2/FeSe2 heterojunction needs only 127 mV overpotential at 50 mA cm-2, remarkably superior to other selenides and confirming the less energy consumption for UOR. The comprehensive analysis demonstrates that the well-designed built-in electric field at the heterointerface of NiSe2/FeSe2 p-p heterojunction due to the difference of energy levels can expedite the charge transfer and thus strengthen the conductivity of heterojunction electrocatalyst. Moreover, the self-driven electron transfer across the NiSe2/FeSe2 heterointerface can induce local charge redistribution at the interface region, which is beneficial for the adsorption of OH− and urea owing to the electrostatic interaction. Therefore, the designed NiSe2/FeSe2 p-p heterojunction with regulated electronic structure displays extraordinary electrocatalytic activity for both the OER and UOR. This study demonstrates a novel strategy to manipulate the surface/interface charge states of electrocatalysts for improving the catalytic activity of OER and UOR, and provides new guidelines for exploring other superior electrocatalysts.

Journal ArticleDOI
TL;DR: In this paper, the structural, electrical, mechanical, optical, and thermal properties of 2D hexagonal boron nitride (h-BN) have been extensively studied.
Abstract: Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.