scispace - formally typeset
Search or ask a question

Showing papers on "Hypothalamus published in 2010"


Journal ArticleDOI
TL;DR: Recently, a subset of neurons was identified in the arcuate nucleus of the hypothalamus that colocalize three neuropeptides, kisspeptin, neurokinin B, and dynorphin, each of which has been shown to play a critical role in the central control of reproduction.
Abstract: Recently, a subset of neurons was identified in the arcuate nucleus of the hypothalamus that colocalize three neuropeptides, kisspeptin, neurokinin B, and dynorphin, each of which has been shown to play a critical role in the central control of reproduction. Growing evidence suggests that these neurons, abbreviated as the KNDy subpopulation, are strongly conserved across a range of species from rodents to humans and play a key role in the physiological regulation of GnRH neurons. KNDy cells are a major target for steroid hormones, form a reciprocally interconnected network, and have direct projections to GnRH cell bodies and terminals, features that position them well to convey steroid feedback control to GnRH neurons and potentially serve as a component of the GnRH pulse generator. In addition, recent work suggests that alterations in KNDy cell peptides may underlie neuroendocrine defects seen in clinical reproductive disorders such as polycystic ovarian syndrome. Taken together, this evidence suggests a key role for the KNDy subpopulation as a focal point in the control of reproductive function in health and disease.

679 citations


Journal ArticleDOI
TL;DR: Thyroid hormone–induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.
Abstract: Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.

610 citations


Journal ArticleDOI
TL;DR: Investigating the possible coexpression of kisspeptin, neurokinin B (NKB), and dynorphin A (Dyn) in neurons of the ARC of the goat and evaluating their potential roles in generating GnRH pulses found that all three neuropeptides are coexpressed in the same population of neurons.
Abstract: Gonadotropin-releasing hormone (GnRH) neurons in the basal forebrain are the final common pathway through which the brain regulates reproduction. GnRH secretion occurs in a pulsatile manner, and indirect evidence suggests the kisspeptin neurons in the arcuate nucleus (ARC) serve as the central pacemaker that drives pulsatile GnRH secretion. The purpose of this study was to investigate the possible coexpression of kisspeptin, neurokinin B (NKB), and dynorphin A (Dyn) in neurons of the ARC of the goat and evaluate their potential roles in generating GnRH pulses. Using double and triple labeling, we confirmed that all three neuropeptides are coexpressed in the same population of neurons. Using electrophysiological techniques to record multiple-unit activity (MUA) in the medial basal hypothalamus, we found that bursts of MUA occurred at regular intervals in ovariectomized animals and that these repetitive bursts (volleys) were invariably associated with discrete pulses of luteinizing hormone (LH) (and by inference GnRH). Moreover, the frequency of MUA volleys was reduced by gonadal steroids, suggesting that the volleys reflect the rhythmic discharge of steroid-sensitive neurons that regulate GnRH secretion. Finally, we observed that central administration of Dyn-inhibit MUA volleys and pulsatile LH secretion, whereas NKB induced MUA volleys. These observations are consistent with the hypothesis that kisspeptin neurons in the ARC drive pulsatile GnRH and LH secretion, and suggest that NKB and Dyn expressed in those neurons are involved in the process of generating the rhythmic discharge of kisspeptin.

525 citations


Journal ArticleDOI
TL;DR: Recombinant fish GtHs were produced for carp, seabream, channel and African catfish, goldfish, eel, tilapia, zebrafish, Manchurian trout and Orange-spotted grouper, where FSHR expression in Leydig cells explains the strong steroidogenic activity of FSH in certain fish species.

468 citations


Journal ArticleDOI
TL;DR: It is concluded that orally-dosed metformin rapidly crosses the blood-brain barrier and differently accumulates in structures of the central nervous system.

321 citations


Journal ArticleDOI
TL;DR: Dual label immunohistochemistry/in situ hybridization and whole-cell patch-clamp electrophysiology data suggest that cross talk between leptin and insulin occurs within a network of cells rather than within individual POMC neurons.
Abstract: Acute leptin administration results in a depolarization and concomitant increase in the firing rate of a subpopulation of arcuate proopiomelanocortin (POMC) cells. This rapid activation of POMC cells has been implicated as a cellular correlate of leptin effects on energy balance. In contrast to leptin, insulin inhibits the activity of some POMC neurons. Several studies have described a "cross talk" between leptin and insulin within the mediobasal hypothalamus via the intracellular enzyme, phosphoinositol-3-kinase (PI3K). Interestingly, both insulin and leptin regulate POMC cellular activity by activation of PI3K; however, it is unclear whether leptin and insulin effects are observed in similar or distinct populations of POMC cells. We therefore used dual label immunohistochemistry/in situ hybridization and whole-cell patch-clamp electrophysiology to map insulin and leptin responsive arcuate POMC neurons. Leptin-induced Fos activity within arcuate POMC neurons was localized separate from POMC neurons that express insulin receptor. Moreover, acute responses to leptin and insulin were largely segregated in distinct subpopulations of POMC cells. Collectively, these data suggest that cross talk between leptin and insulin occurs within a network of cells rather than within individual POMC neurons.

316 citations


Journal ArticleDOI
TL;DR: Novel evidence for a direct effect of oxytocin at the level of the ventral tegmental area (VTA) in the regulation of nAcc dopamine levels is provided and is consistent with previous reports of Oxytocin-dopamine interactions in the establishment and maintenance of social bonds.
Abstract: Variations in maternal behavior among lactating rats associate with differences in estrogen-oxytocin interactions in the medial preoptic area (mPOA) and in dopamine levels in the nucleus accumbens (nAcc). Thus, stable, individual differences in pup licking/grooming (LG) are abolished by oxytocin receptor blockade or treatments that eliminate differences in the nAcc dopamine signal. We provide novel evidence for a direct effect of oxytocin at the level of the ventral tegmental area (VTA) in the regulation of nAcc dopamine levels. Mothers that exhibit consistently increased pup LG (i.e. high LG mothers) by comparison with low LG mothers show increased oxytocin expression in the mPOA and the paraventricular nucleus of the hypothalamus and increased projections of oxytocin-positive cells from both mPOA and paraventricular nucleus of the hypothalamus to the VTA. Direct infusion of oxytocin into the VTA increased the dopamine signal in the nAcc. Finally, high compared with low LG mothers show greater increases in dopamine signal in the nAcc during bouts of pup LG, and this difference is abolished with infusions of an oxytocin receptor antagonist directly into the VTA. These studies reveal a direct effect of oxytocin on dopamine release within the mesocorticolimbic dopamine system and are consistent with previous reports of oxytocin-dopamine interactions in the establishment and maintenance of social bonds.

312 citations


Journal ArticleDOI
TL;DR: The current understanding of the role of gut hormones and the hypothalamus on food intake and body weight control is reviewed to offer the opportunity to develop successful treatments for obesity.
Abstract: The World Health Organisation has estimated that by 2015 approximately 2.3 billion adults will be overweight and more than 700 million obese. Obesity is associated with an increased risk of diabetes, cardiovascular events, stroke and cancer. The hypothalamus is a crucial region for integrating signals from central and peripheral pathways and plays a major role in appetite regulation. In addition, there are reciprocal connections with the brainstem and higher cortical centres. In the arcuate nucleus of the hypothalamus, there are two major neuronal populations which stimulate or inhibit food intake and influence energy homeostasis. Within the brainstem, the dorsal vagal complex plays a role in the interpretation and relaying of peripheral signals. Gut hormones act peripherally to modulate digestion and absorption of nutrients. However, they also act as neurotransmitters within the central nervous system to control food intake. Peptide YY, pancreatic polypeptide, glucagon-like peptide-1 and oxyntomodulin suppress appetite, whilst ghrelin increases appetite through afferent vagal fibres to the caudal brainstem or directly to the hypothalamus. A better understanding of the role of these gut hormones may offer the opportunity to develop successful treatments for obesity. Here we review the current understanding of the role of gut hormones and the hypothalamus on food intake and body weight control.

304 citations


Journal Article
TL;DR: Maternal exposure to prenatal stress or exogenous glucocorticoids can lead to permanent modification of hypothalamo-pituitary-adrenal function and stress-related behaviors in offspring, and the anatomical sites at which these effects take place are reviewed.
Abstract: Modifications of the hypothalamo-pituitary-adrenal axis and associated changes in circulating levels of glucocorticoids form a key component of the response of an organism to stressful challenges. Increased levels of glucocorticoids promote gluconeogenesis, mobilization of amino acids, and stimulation of fat breakdown to maintain circulating levels of glucose necessary to mount a stress response. In addition to profound changes in the physiology and function of multiple tissues, stress and elevated glucocorticoids can also inhibit reproduction, a logical effect for the survival of self. Precise levels of glucocorticoids are required for proper gonadal function; where the balance is disrupted, so is fertility. Glucocorticoids affect gonadal function at multiple levels in hypothalamo-pituitary-gonadal axis: 1) the hypothalamus (to decrease the synthesis and release of gonadotropin-releasing hormone [GnRH]); 2) the pituitary gland (to inhibit the synthesis and release of luteinizing hormone [LH] and follicle stimulating hormone [FSH]); 3) the testis/ovary (to modulate steroidogenesis and/or gametogenesis directly). Furthermore, maternal exposure to prenatal stress or exogenous glucocorticoids can lead to permanent modification of hypothalamo-pituitary-adrenal function and stress-related behaviors in offspring. Glucocorticoids are vital to many aspects of normal brain development, but fetal exposure to superabundant glucocorticoids can result in life-long effects on neuroendocrine function. This review focuses on the molecular mechanisms believed to mediate glucocorticoid inhibition of reproductive functions and the anatomical sites at which these effects take place.

300 citations


Journal ArticleDOI
TL;DR: It is shown that the temporal coordination of juvenile restraint and subsequent pubertal activation is likely mediated by ERα in two separate kisspeptin neuronal populations in the hypothalamus.
Abstract: Puberty onset is initiated by activation of neurons that secrete gonadotropin-releasing hormone (GnRH). The timing and progression of puberty may depend upon temporal coordination of two opposing central mechanisms—a restraint of GnRH secretion before puberty onset, followed by enhanced stimulation of GnRH release to complete reproductive maturation during puberty. Neuronal estrogen receptor α (ERα) has been implicated in both controls; however, the underlying neural circuits are not well understood. Here we test whether these mechanisms are mediated by neurons that express kisspeptin, a neuropeptide that modulates GnRH neurosecretion. Strikingly, conditional ablation of ERα in kisspeptin neurons results in a dramatic advancement of puberty onset in female mice. Furthermore, subsequent pubertal maturation is arrested in these animals, as they fail to acquire normal ovulatory cyclicity. We show that the temporal coordination of juvenile restraint and subsequent pubertal activation is likely mediated by ERα in two separate kisspeptin neuronal populations in the hypothalamus.

299 citations


Journal ArticleDOI
TL;DR: Together these findings provide an anatomical basis for the exploration of Gpr54 actions outside the reproductive axis and reveal a complex temporal and spatial pattern of GPR54 gene expression in developing GnRH neurons.
Abstract: Kisspeptin and G protein-coupled receptor 54 (GPR54) are now acknowledged to play essential roles in the neural regulation of fertility. Using a transgenic Gpr54 LacZ knock-in mouse model, this study aimed to provide 1) a detailed map of cells expressing Gpr54 in the mouse brain and 2) an analysis of Gpr54 expression in GnRH neurons across postnatal development. The highest density of Gpr54-expressing cells in the mouse central nervous system was found in the dentate gyrus of the hippocampus beginning on postnatal d 6 (P6). Abundant Gpr54 expression was also noted in the septum, rostral preoptic area (rPOA), anteroventral nucleus of the thalamus, posterior hypothalamus, periaqueductal grey, supramammillary and pontine nuclei, and dorsal cochlear nucleus. No Gpr54 expression was detected in the arcuate and rostral periventricular nuclei of the hypothalamus. Dual-labeling experiments showed that essentially all Gpr54-expressing cells in the rPOA were GnRH neurons. Analyses of mice at birth, P1, P5, P20, and P30 and as adults revealed a gradual increase in the percentage of GnRH neurons expressing Gpr54 from approximately 40% at birth through to approximately 70% from P20 onward. Whereas GnRH neurons located in the septum displayed a consistent increase across this time, GnRH neurons in the rPOA showed a sharp reduction in Gpr54 expression after birth (to approximately 10% at P5) before increasing to the 70% expression levels by P20. Together these findings provide an anatomical basis for the exploration of Gpr54 actions outside the reproductive axis and reveal a complex temporal and spatial pattern of Gpr54 gene expression in developing GnRH neurons.

Journal ArticleDOI
TL;DR: The distribution and robust sexual dimorphism of kisspeptin‐immunoreactive elements in human hypothalami is described, neuronal contacts between kisspeptins and neurokinin B fibers and GnRH cells are revealed, and co‐synthesis of Kisspeptin and neuroKinin B in the infundibular nucleus is demonstrated.
Abstract: Kisspeptin signaling via the kisspeptin receptor G-protein-coupled receptor-54 plays a fundamental role in the onset of puberty and the regulation of mammalian reproduction. In this immunocytochemical study we addressed the (i) topography, (ii) sexual dimorphism, (iii) relationship to gonadotropin-releasing hormone (GnRH) neurons and (iv) neurokinin B content of kisspeptin-immunoreactive hypothalamic neurons in human autopsy samples. In females, kisspeptin-immunoreactive axons formed a dense periventricular plexus and profusely innervated capillary vessels in the infundibular stalk. Most immunolabeled somata occurred in the infundibular nucleus. Many cells were also embedded in the periventricular fiber plexus. Rostrally, they formed a prominent periventricular cell mass (magnocellular paraventricular nucleus). Robust sex differences were noticed in that fibers and somata were significantly less numerous in male individuals. In dual-immunolabeled specimens, fine kisspeptin-immunoreactive axon varicosities formed axo-somatic, axo-dendritic and axo-axonal contacts with GnRH neurons. Dual-immunofluorescent studies established that 77% of kisspeptin-immunoreactive cells in the infundibular nucleus synthesize the tachykinin peptide neurokinin B, which is known to play crucial role in human fertility; 56 and 17% of kisspeptin fibers in the infundibular and periventricular nuclei, respectively, contained neurokinin B immunoreactivity. Site-specific co-localization patterns implied that kisspeptin neurons in the infundibular nucleus and elsewhere contributed differentially to these plexuses. This study describes the distribution and robust sexual dimorphism of kisspeptin-immunoreactive elements in human hypothalami, reveals neuronal contacts between kisspeptin-immunoreactive fibers and GnRH cells, and demonstrates co-synthesis of kisspeptins and neurokinin B in the infundibular nucleus. The neuroanatomical information will contribute to our understanding of central mechanisms whereby kisspeptins regulate human fertility.


Journal ArticleDOI
TL;DR: Sex differences in kisspeptin in the arcuate nucleus, unlike that of dynorphin and neurokinin B, are not due solely to exposure to prenatal T, suggesting the existence of different critical periods for multiple peptides coexpressed within the same neuron.
Abstract: Recent work in sheep has identified a neuronal subpopulation in the arcuate nucleus that coexpresses kisspeptin, neurokinin B, and dynorphin (referred to here as KNDy cells) and that mediate the negative feedback influence of progesterone on GnRH secretion. We hypothesized that sex differences in progesterone negative feedback are due to sexual dimorphism of KNDy cells and compared neuropeptide and progesterone receptor immunoreactivity in this subpopulation between male and female sheep. In addition, because sex differences in progesterone negative feedback and neurokinin B are due to the influence of testosterone (T) during fetal life, we determined whether prenatal T exposure would mimic sex differences in KNDy cells. Adult rams had nearly half the number of kisspeptin, neurokinin B, dynorphin, and progesterone receptor-positive cells in the arcuate nucleus as did females, but the percentage of KNDy cells colocalizing progesterone receptors remained high in both sexes. Prenatal T treatment also reduced the number of dynorphin, neurokinin B, and progesterone receptor-positive cells in the female arcuate nucleus; however, the number of kisspeptin cells remained high and at levels comparable to control females. Thus, sex differences in kisspeptin in the arcuate nucleus, unlike that of dynorphin and neurokinin B, are not due solely to exposure to prenatal T, suggesting the existence of different critical periods for multiple peptides coexpressed within the same neuron. In addition, the imbalance between inhibitory (dynorphin) and stimulatory (kisspeptin) neuropeptides in this subpopulation provides a potential explanation for the decreased ability of progesterone to inhibit GnRH neurons in prenatal T-treated ewes.

Journal ArticleDOI
TL;DR: Results are consistent with the human genetics, and indicate that although brief activation of NK3R stimulates GnRH release, repetitive stimulation of this pathway, in contrast to that of kisspeptin receptor, fails to sustain pulsatile Gn RH release.
Abstract: Human genetics indicate that kisspeptin and neurokinin B (NKB) signaling are necessary for generating pulsatile LH release and therefore for initiation of puberty and maintaining gonadal function. In the present study, male monkeys were employed to examine 1) whether activation of the NKB receptor (NK3R) is associated with GnRH release, and 2) hypothalamic localization of these peptides using immunofluorescence histochemistry. Agonadal juveniles, in which pituitary responsiveness to GnRH was heightened by GnRH priming, were employed to indirectly examine GnRH-releasing actions of NK3R and kisspeptin receptor agonists by tracking LH after their i.v. injection. Castrated adults were used for immunohistochemistry. Single i.v. injections of NKB or senktide (an NK3R agonist) elicited robust LH discharges that were abolished by GnRH receptor antagonism (acyline) confirming the ligands' hypothalamic action. Intermittent infusion of senktide (1-min pulse every hour for 4 h), in contrast to that of kisspeptin, failed to sustain pulsatile GnRH release. Repetitive senktide injections did not compromise the GnRH-releasing action of kisspeptin. NKB and kisspeptin were colocalized in perikarya of the arcuate nucleus and in axonal projections to the median eminence, confirming earlier findings in sheep. These results are consistent with the human genetics, and indicate that although brief activation of NK3R stimulates GnRH release, repetitive stimulation of this pathway, in contrast to that of kisspeptin receptor, fails to sustain pulsatile GnRH release. In addition, the data provide a platform for future elucidation of the interactions between NKB and kisspeptin that are required for generating pulsatile GnRH release in primates.

Journal ArticleDOI
TL;DR: This review addresses the issues of drug design and specificity and focuses on recent findings on oxytocin and its heterotrimeric G protein‐coupled receptor OTR to highlight the role of Oxytocin in behavior and affectivity.
Abstract: Is oxytocin the hormone of happiness? Probably not. However, this small nine amino acid peptide is involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterus contraction, milk ejection, maternal behavior, osteoporosis, diabetes, cancer, social bonding, and stress, which makes oxytocin and its receptor potential candidates as targets for drug therapy. In this review, we address the issues of drug design and specificity and focus our discussion on recent findings on oxytocin and its heterotrimeric G protein-coupled receptor OTR. In this regard, we will highlight the following topics: (i) the role of oxytocin in behavior and affectivity, (ii) the relationship between oxytocin and stress with emphasis on the hypothalamo-pituitary-adrenal axis, (iii) the involvement of oxytocin in pain regulation and nociception, (iv) the specific action mechanisms of oxytocin on intracellular Ca²(+) in the hypothalamo neurohypophysial system (HNS) cell bodies, (v) newly generated transgenic rats tagged by a visible fluorescent protein to study the physiology of vasopressin and oxytocin, and (vi) the action of the neurohypophysial hormone outside the central nervous system, including the myometrium, heart and peripheral nervous system. As a short nine amino acid peptide, closely related to its partner peptide vasopressin, oxytocin appears to be ideal for the design of agonists and antagonists of its receptor. In addition, not only the hormone itself and its binding to OTR, but also its synthesis, storage and release can be endogenously and exogenously regulated to counteract pathophysiological states. Understanding the fundamental physiopharmacology of the effects of oxytocin is an important and necessary approach for developing a potential pharmacotherapy.

Journal ArticleDOI
TL;DR: This study indicates that neurons important for energy homeostasis can be regenerated in adult feeding centers under neurodegenerative conditions and suggests that de novo neurogenesis might serve as a compensatory mechanism contributing to the plastic control of energy balance in response to environmental and physiologic insults.
Abstract: The ability to develop counter-regulatory mechanisms to maintain energy balance in response to environmental and physiologic insults is essential for survival, but the mechanisms underlying these compensatory regulations are poorly understood. Agouti-related peptide (AGRP) and Neuropeptide Y are potent orexigens and are coexpressed in neurons in the arcuate nucleus of the hypothalamus. Acute ablation of these neurons leads to severe anorexia and weight loss, whereas progressive degeneration of these neurons has minimal impact on food intake and body weight, suggesting that compensatory mechanisms are developed to maintain orexigenic drive. In this study, we show that cell proliferation is increased in the hypothalamus of adult mutant animals in which AgRP neurons undergo progressive neurodegeneration due to deletion of mitochondrial transcription factor A, and that a subset of these newly generated cells differentiate into AgRP neurons along with other resident neuronal subtypes. Furthermore, some of the newly generated cells are capable of responding to leptin, and a central blockade of cell proliferation in adult animals results in decreases in food intake and body adiposity in mutant but not in control animals. Our study indicates that neurons important for energy homeostasis can be regenerated in adult feeding centers under neurodegenerative conditions. It further suggests that de novo neurogenesis might serve as a compensatory mechanism contributing to the plastic control of energy balance in response to environmental and physiologic insults.

Journal ArticleDOI
TL;DR: By definition central respiratory chemoreceptors (CRCs) are cells that are sensitive to changes in brain PCO2 or pH and contribute to the stimulation of breathing elicited by hypercapnia or metabolic acidosis.
Abstract: By definition central respiratory chemoreceptors (CRCs) are cells that are sensitive to changes in brain PCO(2) or pH and contribute to the stimulation of breathing elicited by hypercapnia or metabolic acidosis. CO(2) most likely works by lowering pH. The pertinent proton receptors have not been identified and may be ion channels. CRCs are probably neurons but may also include acid-sensitive glia and vascular cells that communicate with neurons via paracrine mechanisms. Retrotrapezoid nucleus (RTN) neurons are the most completely characterized CRCs. Their high sensitivity to CO(2) in vivo presumably relies on their intrinsic acid sensitivity, excitatory inputs from the carotid bodies and brain regions such as raphe and hypothalamus, and facilitating influences from neighboring astrocytes. RTN neurons are necessary for the respiratory network to respond to CO(2) during the perinatal period and under anesthesia. In conscious adults, RTN neurons contribute to an unknown degree to the pH-dependent regulation of breathing rate, inspiratory, and expiratory activity. The abnormal prenatal development of RTN neurons probably contributes to the congenital central hypoventilation syndrome. Other CRCs presumably exist, but the supportive evidence is less complete. The proposed locations of these CRCs are the medullary raphe, the nucleus tractus solitarius, the ventrolateral medulla, the fastigial nucleus, and the hypothalamus. Several wake-promoting systems (serotonergic and catecholaminergic neurons, orexinergic neurons) are also putative CRCs. Their contribution to central respiratory chemoreception may be behavior dependent or vary according to the state of vigilance.

Journal ArticleDOI
TL;DR: It is demonstrated that diet restriction significantly increases SIRT1 protein levels and induces neural activation in the dorsomedial and lateral hypothalamic nuclei, providing insight into the role of the hypothalamus in the regulation of metabolism and aging in mammals.
Abstract: Diet restriction retards aging and extends lifespan by triggering adaptive mechanisms that alter behavioral, physiological, and biochemical responses in mammals. Little is known about the molecular pathways evoking the corresponding central response. One factor that mediates the effects of diet restriction is the mammalian nicotinamide adenine dinucleotide (NAD)-dependent deacetylase SIRT1. Here we demonstrate that diet restriction significantly increases SIRT1 protein levels and induces neural activation in the dorsomedial and lateral hypothalamic nuclei. Increasing SIRT1 in the brain of transgenic (BRASTO) mice enhances neural activity specifically in these hypothalamic nuclei, maintains a higher range of body temperature, and promotes physical activity in response to different diet-restricting paradigms. These responses are all abrogated in Sirt1-deficient mice. SIRT1 upregulates expression of the orexin type 2 receptor specifically in these hypothalamic nuclei in response to diet-restricting conditions, augmenting response to ghrelin, a gut hormone whose levels increase in these conditions. Our results suggest that in the hypothalamus, SIRT1 functions as a key mediator of the central response to low nutritional availability, providing insight into the role of the hypothalamus in the regulation of metabolism and aging in mammals.

Journal ArticleDOI
TL;DR: Age-dependent changes in V(1A)-R and OT-R binding are likely associated with the maturation of behaviors, such as sexual and aggressive behaviors, while disruption of these changes by MS might contribute to previously observed changes in social behaviors after MS.

Journal ArticleDOI
TL;DR: Future studies will be needed to determine whether NKB signaling plays a permissive role in the onset of puberty or is part of the driving force initiating the maturation of reproductive function, as well as whether NK3R signaling as an important component of this regulatory circuit.

Journal ArticleDOI
19 Jan 2010-PLOS ONE
TL;DR: It is demonstrated that consumption of a high fat diet results in a 2.5 fold increase in Arc Fto expression, the first indication that selective alteration of Fto levels in the hypothalamus can influence food intake, consistent with the reported effects of FTO alleles on appetite and food intake in man.
Abstract: Sequence variants in the first intron of FTO are strongly associated with human obesity and human carriers of the risk alleles show evidence for increased appetite and food intake. Mice globally lacking Fto display a complex phenotype characterised by both increased energy expenditure and increased food intake. The site of action of FTO on energy balance is unclear. Fasting reduces levels of Fto mRNA in the arcuate nucleus (ARC) of the hypothalamus, a site where Fto expression is particularly high. In this study, we have extended this nutritional link by demonstrating that consumption of a high fat diet (45%) results in a 2.5 fold increase in Arc Fto expression. We have further explored the role of hypothalamic Fto in the control of food intake by using stereotactic injections coupled with AAV technology to bi-directionally modulate Fto expression. An over expression of Fto protein by 2.5-fold in the ARC results in a 14% decrease in average daily food intake in the first week. In contrast, knocking down Arc Fto expression by 40% increases food intake by 16%. mRNA levels of Agrp, Pomc and Npy, ARC-expressed genes classically associated with the control of food intake, were not affected by the manipulation of Fto expression. However, over expression of Fto resulted in a 4-fold increase in the mRNA levels of Stat3, a signalling molecule critical for leptin receptor signalling, suggesting a possible candidate for the mediation of Fto's actions. These data provide further support for the notion that FTO itself can influence key components of energy balance, and is therefore a strong candidate for the mediation of the robust association between FTO intronic variants and adiposity. Importantly, this provide the first indication that selective alteration of FTO levels in the hypothalamus can influence food intake, a finding consistent with the reported effects of FTO alleles on appetite and food intake in man.

Journal ArticleDOI
TL;DR: It is revealed the importance of an early catch-up growth that reduces abnormal organization of hypothalamic pathways involved in energy homeostasis, whereas protein restriction, maintained during postnatal development leads to an important immaturity of the hypothalamus.
Abstract: Nutritional programming, taking place in utero or early after birth, is closely linked with metabolic and appetite disorders in adulthood. Following the hypothesis that nutritional programming impacts hypothalamic neuronal organization, we report on discrepancies of multiple molecular and cellular early events that take place in the hypothalamus of rats submitted to intrauterine growth restriction (IUGR). Expression screening performed on hypothalami from IUGR rats at birth and at postnatal d 12 identified changes in gene expression of neurodevelopmental process (cell differentiation and cytoskeleton organization). Additionally, a slight reduction of agouti-related protein and a strong reduction of alpha-MSH-immunoreactive efferent fibers were demonstrated in the paraventricular nucleus of IUGR rats. Rapid catch-up growth of IUGR rats, 5 d after birth, had a positive effect on neurodevelopmental factors and on neuronal projections emanating from the arcuate nucleus. The molecular and cellular anomalies detected in IUGR rats can be related to the reduced and delayed plasma leptin surge from d 0-16 when compared with control and IUGR rats with catch-up growth. However, the ability of leptin to activate intracellular signaling in arcuate nucleus neurons was not reduced in IUGR rats. Other mechanism such as epigenetic regulation of the major appetite-regulating neuropeptides genes was analyzed in parallel with their mRNA expression during postnatal development. This study reveals the importance of an early catch-up growth that reduces abnormal organization of hypothalamic pathways involved in energy homeostasis, whereas protein restriction, maintained during postnatal development leads to an important immaturity of the hypothalamus.

Journal ArticleDOI
TL;DR: NK3R is distributed in areas of the sheep POA and hypothalamus known to be involved in the control of reproductive neuroendocrine function and the lack of NK3R in GnRH neurones suggests that the actions of NKB on GnRH neurosecretory activity in the ewe are mediated indirectly via other neurones and/or neuropeptides.
Abstract: Recent evidence has implicated neurokinin B (NKB) in the complex neuronal network mediating the effects of gonadal steroids on the regulation of gonadotrophin-releasing hormone (GnRH) secretion. Because the neurokinin 3 receptor (NK3R) is considered to mediate the effects of NKB at the cellular level, we determined the distribution of immunoreactive NK3R in the septal region, preoptic area (POA) and hypothalamus of the ewe. NK3R cells and/or fibres were found in areas including the bed nucleus of the stria terminalis, POA, anterior hypothalamic and perifornical areas, dopaminergic A15 region, dorsomedial and lateral hypothalamus, arcuate nucleus (ARC) and the ventral premammillary nucleus. We also used dual-label immunocytochemistry to determine whether a neuroanatomical basis for direct modulation of GnRH neurones by NKB was evident. No GnRH neurones at any rostral-caudal level were observed to contain NK3R immunoreactivity, although GnRH neurones and fibres were in proximity to NK3R-containing fibres. Because NKB fibres formed close contacts with NKB neurones in the ARC, we determined whether these NKB neurones also contained immunoreactive NK3R. In luteal-phase ewes, 64% +/- 11 of NKB neurones colocalised NK3R. In summary, NK3R is distributed in areas of the sheep POA and hypothalamus known to be involved in the control of reproductive neuroendocrine function. Colocalisation of NK3R in NKB neurones of the ARC suggests a potential mechanism for the autoregulation of this subpopulation; however, the lack of NK3R in GnRH neurones suggests that the actions of NKB on GnRH neurosecretory activity in the ewe are mediated indirectly via other neurones and/or neuropeptides.

Journal ArticleDOI
TL;DR: Pretreatment with OVT reversed the effects of nesfatin-1 on both food and water intake and on mean arterial pressure, suggesting that the central oxytocin system is downstream of the central melanocortin system.
Abstract: Nesfatin-1 is an 82-amino acid protein encoded by the nucleobindin2 gene. When injected intracerebroventricularly, nesfatin-1, via a melanocortin ¾ receptor-dependent mechanism, potently decreased both food and water intakes and elevated mean arterial pressure in a dose-related manner. Because nesfatin-1 colocalized with oxytocin in hypothalamus and because nesfatin-1 had direct depolarizing effects on oxytocin-producing neurons in hypothalamic slice preparations, we hypothesized that the actions of nesfatin-1 required the presence of functional oxytocin receptors. We, therefore, pretreated conscious, unrestrained male rats with the oxytocin receptor antagonist, ornithine vasotocin (OVT), before treatment with nesfatin-1. We found that pretreatment with OVT reversed the effects of nesfatin-1 on both food and water intake and on mean arterial pressure, indicating that the central oxytocin system is a downstream mediator of these actions of nesfatin-1. Additionally, we found that OVT reversed the anorexigenic effect of α-melanocyte-stimulating hormone (α-MSH), suggesting that the central oxytocin system is downstream of the central melanocortin system. Taken together, these data suggest that nesfatin-1 acts through a serial neuronal circuit, in which nesfatin-1 activates the central melanocortin system, which, in turn, acts through the central oxytocin system, leading to an inhibition of food and water intake and an increase in mean arterial pressure.

Journal ArticleDOI
TL;DR: The delineation of this circuitry will facilitate a functional analysis of the possible role of these potential command-like neurons to modulate autonomic outflow and coordinate metabolic responses in liver and adipose tissue.
Abstract: The autonomic nervous system regulates fuel availability and energy storage in the liver, adipose tissue, and other organs; however, the molecular components of this neural circuit are poorly understood. We sought to identify neural populations that project from the CNS indirectly through multisynaptic pathways to liver and epididymal white fat in mice using pseudorabies virus strains expressing different reporters together with BAC transgenesis and immunohistochemistry. Neurons common to both circuits were identified in subpopulations of the paraventricular nucleus of the hypothalamus (PVH) by double labeling with markers expressed in viruses injected in both sites. The lateral hypothalamus and arcuate nucleus of the hypothalamus and brainstem regions (nucleus of the solitary tract and A5 region) also project to both tissues but are labeled at later times. Connections from these same sites to the PVH were evident after direct injection of virus into the PVH, suggesting that these regions lie upstream of the PVH in a common pathway to liver and adipose tissue (two metabolically active organs). These common populations of brainstem and hypothalamic neurons express neuropeptide Y and proopiomelanocortin in the arcuate nucleus, melanin-concentrating hormone, and orexin in the lateral hypothalamus and in the corticotrophin-releasing hormone and oxytocin in the PVH. The delineation of this circuitry will facilitate a functional analysis of the possible role of these potential command-like neurons to modulate autonomic outflow and coordinate metabolic responses in liver and adipose tissue.

Journal ArticleDOI
TL;DR: The HcrT system interacts with CRF and AVP neurons in the PVN and modulates the anxiogenic-like effects of nicotine whereas Hcrt and CRF play a different role in the reinstatement of nicotine-seeking.
Abstract: Emerging evidence suggests that the hypocretinergic system is involved in addictive behavior. In this study, we investigated the role of these hypothalamic neuropeptides in anxiety-like responses of nicotine and stress-induced reinstatement of nicotine-seeking behavior. Acute nicotine (0.8 mg/kg, s.c.) induced anxiogenic-like effects in the elevated plus-maze and activated the paraventricular nucleus of the hypothalamus (PVN) as revealed by c-Fos expression. Pretreatment with the hypocretin receptor 1 (Hcrtr-1) antagonist SB334867 or preprohypocretin gene deletion blocked both nicotine effects. In the PVN, SB334867 also prevented the activation of corticotrophin releasing factor (CRF) and arginine-vasopressin (AVP) neurons, which expressed Hcrtr-1. In addition, an increase of the percentage of c-Fos-positive hypocretin cells in the perifornical and dorsomedial hypothalamic (PFA/DMH) areas was found after nicotine (0.8 mg/kg, s.c.) administration. Intracerebroventricular infusion of hypocretin-1 (Hcrt-1) (0.75 nmol/1 μl) or footshock stress reinstated a previously extinguished nicotine-seeking behavior. The effects of Hcrt-1 were blocked by SB334867, but not by the CRF1 receptor antagonist antalarmin. Moreover, SB334867 did not block CRF-dependent footshock-induced reinstatement of nicotine-seeking while antalarmin was effective in preventing this nicotine motivational response. Therefore, the Hcrt system interacts with CRF and AVP neurons in the PVN and modulates the anxiogenic-like effects of nicotine whereas Hcrt and CRF play a different role in the reinstatement of nicotine-seeking. Indeed, Hcrt-1 reinstates nicotine-seeking through a mechanism independent of CRF activation whereas CRF mediates the reinstatement induced by stress.

Journal ArticleDOI
TL;DR: The present article provides a brief historical background to the work that led to the concept of the GnRH pulse generator, and proposes that kisspeptin neurons in the arcuate nucleus are key players in this regard.

Journal ArticleDOI
TL;DR: The hypothalamic-pituitary-thyroid (HPT) axis plays a critical role in mediating changes in metabolism and thermogenesis and the central regulation of the thyroid axis by Thyrotropin Releasing Hormone neurons in the paraventricular nucleus of the hypothalamus (PVN) is of key importance for the normal function of the axis.

Journal ArticleDOI
TL;DR: In vivo support for non-genomic steroid effects in mammals is provided and it is suggested that AEA is a mediator of these effects.