scispace - formally typeset
Search or ask a question

Showing papers on "Membrane lipids published in 2012"


Journal ArticleDOI
TL;DR: In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation, and it is proposed that abnormal accumulation of luminal lipids causes secondary lysOSome storage by blocking TRP ML1- and Ca(2+)-dependent lyssomal trafficking.
Abstract: Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.

384 citations


Journal ArticleDOI
TL;DR: Analysis of the lipid composition of influenza virus–infected cells provides support for the membrane raft-based biogenesis model.
Abstract: The influenza virus (IFV) acquires its envelope by budding from host cell plasma membranes. Using quantitative shotgun mass spectrometry, we determined the lipidomes of the host Madin–Darby canine kidney cell, its apical membrane, and the IFV budding from it. We found the apical membrane to be enriched in sphingolipids (SPs) and cholesterol, whereas glycerophospholipids were reduced, and storage lipids were depleted compared with the whole-cell membranes. The virus membrane exhibited a further enrichment of SPs and cholesterol compared with the donor membrane at the expense of phosphatidylcholines. Our data are consistent with and extend existing models of membrane raft-based biogenesis of the apical membrane and IFV envelope.

246 citations


Journal ArticleDOI
09 Nov 2012-Science
TL;DR: Intramitochondrial lipid trafficking may involve a regulatory feedback mechanism that limits the accumulation of cardiolipin in mitochondria and is identified as a lipid transfer protein that can shuttle phosphatidic acid between mitochondrial membranes.
Abstract: Mitochondria are dynamic organelles whose function depends on intramitochondrial phospholipid synthesis and the supply of membrane lipids from the endoplasmic reticulum. How phospholipids are transported to and in-between mitochondrial membranes remained unclear. We identified Ups1, a yeast member of a conserved family of intermembrane space proteins, as a lipid transfer protein that can shuttle phosphatidic acid between mitochondrial membranes. Lipid transfer required the dynamic assembly of Ups1 with Mdm35 and allowed conversion of phosphatidic acid to cardiolipin in the inner membrane. High cardiolipin concentrations prevented membrane dissociation of Ups1, leading to its proteolysis and inhibiting transport of phosphatidic acid and cardiolipin synthesis. Thus, intramitochondrial lipid trafficking may involve a regulatory feedback mechanism that limits the accumulation of cardiolipin in mitochondria.

214 citations


Journal ArticleDOI
TL;DR: It is suggested that PLDα1-derived PA binds to MAP65-1, thus mediating microtubule stabilization and salt tolerance, and reveals a functional connection between membrane lipids and the cytoskeleton in environmental stress signaling.
Abstract: Membrane lipids play fundamental structural and regulatory roles in cell metabolism and signaling. Here, we report that phosphatidic acid (PA), a product of phospholipase D (PLD), regulates MAP65-1, a microtubule-associated protein, in response to salt stress. Knockout of the PLDα1 gene resulted in greater NaCl-induced disorganization of microtubules, which could not be recovered during or after removal of the stress. Salt affected the association of MAP65-1 with microtubules, leading to microtubule disorganization in pldα1cells, which was alleviated by exogenous PA. PA bound to MAP65-1, increasing its activity in enhancing microtubule polymerization and bundling. Overexpression of MAP65-1 improved salt tolerance of Arabidopsis thaliana cells. Mutations of eight amino acids in MAP65-1 led to the loss of its binding to PA, microtubule-bundling activity, and promotion of salt tolerance. The pldα1 map65-1 double mutant showed greater sensitivity to salt stress than did either single mutant. These results suggest that PLDα1-derived PA binds to MAP65-1, thus mediating microtubule stabilization and salt tolerance. The identification of MAP65-1 as a target of PA reveals a functional connection between membrane lipids and the cytoskeleton in environmental stress signaling.

191 citations


Journal ArticleDOI
25 Oct 2012-Virology
TL;DR: It is suggested that the lipids are functionally involved in E protein ion channel activity, forming a protein–lipid pore, a novel concept for CoV Eprotein ion channel entity.

176 citations


Journal ArticleDOI
TL;DR: This work has shown that several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity.

163 citations


Journal ArticleDOI
TL;DR: Generalized polarization fluctuations in the plasma membrane of intact rabbit erythrocytes and Chinese hamster ovary cells that can be explained by the existence of tightly packed micro-domains moving in a more fluid background phase are observed.
Abstract: Cellular membranes are heterogeneous in composition, and the prevailing theory holds that the structures responsible for this heterogeneity in vivo are small structures (10–200 nm), sterol- and sphingolipid-enriched, of different sizes, highly dynamic denominated rafts. Rafts are postulated to be platforms, which by sequestering different membrane components can compartmentalize cellular processes and regulate signaling pathways. Despite an enormous effort in this area, the existence of these domains is still under debate due to the characteristics of the structures itself: small in size and highly mobile, which from the technical point of view implies using techniques with high spatial and temporal resolution. In this report we measured rapid fluctuations of the normalized ratio of the emission intensity at two wavelengths of Laurdan, a membrane fluorescent dye sensitive to local membrane packing. We observed generalized polarization fluctuations in the plasma membrane of intact rabbit erythrocytes and Chinese hamster ovary cells that can be explained by the existence of tightly packed micro-domains moving in a more fluid background phase. These structures, which display different lipid packing, have different sizes; they are found in the same cell and in the entire cell population. The small size and characteristic high lipid packing indicate that these micro-domains have properties that have been proposed for lipid rafts.

162 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of different types of lipids on MscS and MscL mechanosensitivity simultaneously using the patch-clamp technique and confocal microscopy were examined.
Abstract: Mechanosensitive (MS) channels of small (MscS) and large (MscL) conductance are the major players in the protection of bacterial cells against hypoosmotic shock. Although a great deal is known about structure and function of these channels, much less is known about how membrane lipids may influence their mechanosensitivity and function. In this study, we use liposome coreconstitution to examine the effects of different types of lipids on MscS and MscL mechanosensitivity simultaneously using the patch-clamp technique and confocal microscopy. Fluorescence lifetime imaging (FLIM)-FRET microscopy demonstrated that coreconstitution of MscS and MscL led to clustering of these channels causing a significant increase in the MscS activation threshold. Furthermore, the MscL/MscS threshold ratio dramatically decreased in thinner compared with thicker bilayers and upon addition of cholesterol, known to affect the bilayer thickness, stiffness and pressure profile. In contrast, application of micromolar concentrations of lysophosphatidylcholine (LPC) led to an increase of the MscL/MscS threshold ratio. These data suggest that differences in hydrophobic mismatch and bilayer stiffness, change in transbilayer pressure profile, and close proximity of MscL and MscS affect the structural dynamics of both channels to a different extent. Our findings may have far-reaching implications for other types of ion channels and membrane proteins that, like MscL and MscS, may coexist in multiple molecular complexes and, consequently, have their activation characteristics significantly affected by changes in the lipid environment and their proximity to each other.

162 citations


Journal ArticleDOI
Lori Johnson1, Heidi Mulcahy1, Uliana Kanevets1, Yan Shi1, Shawn Lewenza1 
TL;DR: It is proposed that polyamines are produced under Mg(2+)-limiting conditions as an organic polycation to bind lipopolysaccharide (LPS) and to stabilize and protect the outer membrane against antibiotic and oxidative damage.
Abstract: Extracellular DNA acts as a cation chelator and induces the expression of antibiotic resistance genes regulated by Mg 2+ levels. Here we report the characterization of novel DNA-induced genes in Pseudomonas aeruginosa that are annotated as homologs of the spermidine synthesis genes speD ( PA4773 ) and speE ( PA4774 ). The addition of sublethal concentrations of DNA and membrane-damaging antibiotics induced expression of the genes PA4773 to PA4775 , as shown using transcriptional lux fusions and quantitative RT-PCR. Exogenous polyamine addition prevented DNA- and peptide-mediated gene induction. Mutation of PA4774 resulted in an increased outer membrane (OM) susceptibility phenotype upon polymyxin B, CP10A, and gentamicin treatment. When the membrane-localized fluorescent probe C 11 -BODIPY 581/591 was used as an indicator of peroxidation of membrane lipids, the PA4774 :: lux mutant demonstrated an increased susceptibility to oxidative membrane damage from H 2 O 2 treatment. Addition of exogenous polyamines protected the membranes of the PA4774 :: lux mutant from polymyxin B and H 2 O 2 treatment. Polyamines from the outer surface were isolated and shown to contain putrescine and spermidine by using high-performance liquid chromatography and mass spectrometry. The PA4774 :: lux mutant did not produce spermidine on the cell surface, but genetic complementation restored surface spermidine production as well as the antibiotic and oxidative stress resistance phenotypes of the membrane. We have identified new functions for spermidine on the cell surface and propose that polyamines are produced under Mg 2+ -limiting conditions as an organic polycation to bind lipopolysaccharide (LPS) and to stabilize and protect the outer membrane against antibiotic and oxidative damage.

150 citations


Journal ArticleDOI
TL;DR: It is shown that diplopterol, the simplest bacterial hopanoid, has similar properties and that hopanoids are bacterial “sterol surrogates” with the ability to order saturated lipids and to form a liquid-ordered phase in model membranes, suggesting the evolution of an ordered biochemically active liquid membrane could have evolved before the oxygenation of Earth's surface and the emergence of sterols.
Abstract: Liquid-ordered phases are one of two biochemically active membrane states, which until now were thought to be a unique consequence of the interactions between eukaryotic membrane lipids. The formation of a liquid-ordered phase depends crucially on the ordering properties of sterols. However, it is not known whether this capacity exists in organisms that lack sterols, such as bacteria. We show that diplopterol, the simplest bacterial hopanoid, has similar properties and that hopanoids are bacterial “sterol surrogates” with the ability to order saturated lipids and to form a liquid-ordered phase in model membranes. These observations suggest that the evolution of an ordered biochemically active liquid membrane could have evolved before the oxygenation of Earth’s surface and the emergence of sterols.

148 citations


Journal ArticleDOI
TL;DR: It is shown that giant unilamellar vesicles composed of phospholipids can undergo the coupled process of fusion and budding transformation, which mimics cell growth and division.
Abstract: Mechanisms that enabled primitive cell membranes to self-reproduce have been discussed based on the physicochemical properties of fatty acids; however, there must be a transition to modern cell membranes composed of phospholipids [Budin I, Szostak JW (2011) Proc Natl Acad Sci USA 108:5249–5254]. Thus, a growth-division mechanism of membranes that does not depend on the chemical nature of amphiphilic molecules must have existed. Here, we show that giant unilamellar vesicles composed of phospholipids can undergo the coupled process of fusion and budding transformation, which mimics cell growth and division. After gaining excess membrane by electrofusion, giant vesicles spontaneously transform into the budded shape only when they contain macromolecules (polymers) inside their aqueous core. This process is a result of the vesicle maximizing the translational entropy of the encapsulated polymers (depletion volume effect). Because the cell is a lipid membrane bag containing highly concentrated biopolymers, this coupling process that is induced by physical and nonspecific interactions may have a general importance in the self-reproduction of the early cellular compartments.

Journal ArticleDOI
15 Feb 2012
TL;DR: Retinoic acid receptor-related orphan receptors (ROR) α and γ, and Epstein-Barr virus induced gene 2 (EBI2) have been identified as novel Oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.
Abstract: Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene) proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP) homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR) α and γ, and Epstein-Barr virus induced gene 2 (EBI2) have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.

Journal ArticleDOI
TL;DR: An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function.
Abstract: Membrane biochemists are becoming increasingly aware of the role of lipid–protein interactions in diverse cellular functions. This review describes how conformational changes in membrane proteins, involving folding, stability, and membrane shape transitions, potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid–protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biom...

Journal ArticleDOI
TL;DR: Polar lipid assembly in plants requires tight co-ordination between the chloroplast and the ER and necessitates inter-organelle lipid trafficking, and direct membrane contact sites between theER and the chloroplasts outer envelopes are discussed as possible conduits for lipid transfer.
Abstract: Plant chloroplasts contain an intricate photosynthetic membrane system, the thylakoids, and are surrounded by two envelope membranes at which thylakoid lipids are assembled. The glycoglycerolipids mono- and digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol as well as phosphatidylglycerol, are present in thylakoid membranes, giving them a unique composition. Fatty acids are synthesized in the chloroplast and are either directly assembled into thylakoid lipids at the envelope membranes or exported to the ER (endoplasmic reticulum) for extraplastidic lipid assembly. A fraction of lipid precursors is reimported into the chloroplast for the synthesis of thylakoid lipids. Thus polar lipid assembly in plants requires tight co-ordination between the chloroplast and the ER and necessitates inter-organelle lipid trafficking. In the present paper, we discuss the current knowledge of the export of fatty acids from the chloroplast and the import of chloroplast lipid precursors assembled at the ER. Direct membrane contact sites between the ER and the chloroplast outer envelopes are discussed as possible conduits for lipid transfer.

Journal ArticleDOI
TL;DR: Examining the complex mechanisms by which n-3 PUFA acyl chains reorganize membrane architecture will enhance the translation of these fatty acids into the clinic for treating several diseases.
Abstract: N-3 polyunsaturated fatty acids (PUFAs) from fish oil exert their functional effects by targeting multiple mechanisms. One mechanism to emerge in the past decade is the ability of n-3 PUFA acyl chains to perturb the molecular organization of plasma membrane sphingolipid/cholesterol-enriched lipid raft domains. These domains are nanometer-scale assemblies that coalesce to compartmentalize select proteins for optimal function. Here we review recent evidence on how n-3 PUFAs modify lipid rafts from biophysical and biochemical experiments from several different model systems. A central theme emerges from these studies. N-3 PUFA acyl chains display tremendous conformational flexibility and a low affinity for cholesterol and saturated acyl chains. This unique flexibility of n-3 PUFA acyl chains impacts the organization of inner and outer leaflet lipid rafts by disrupting acyl chain packing and molecular order within rafts. Ultimately, the disruption in raft organization has consequences for protein clustering and thereby signaling. Overall, elucidating the complex mechanisms by which n-3 PUFA acyl chains reorganize membrane architecture will enhance the translation of these fatty acids into the clinic for treating several diseases.

Journal ArticleDOI
TL;DR: In this article, the effects of cyclic oligosaccharide compounds (CDs) were examined in cell and mouse models of Alzheimer disease (AD) and showed neuroprotective effects of CD in a transgenic mouse model of AD.
Abstract: There is extensive evidence that cholesterol and membrane lipids play a key role in Alzheimer disease (AD) pathogenesis. Cyclodextrins (CD) are cyclic oligosaccharide compounds widely used to bind cholesterol. Because CD exerts significant beneficial effects in Niemann-Pick type C disease, which shares neuropathological features with AD, we examined the effects of hydroxypropyl-β-CD (HP-β-CD) in cell and mouse models of AD. Cell membrane cholesterol accumulation was detected in N2a cells overexpressing Swedish mutant APP (SwN2a), and the level of membrane cholesterol was reduced by HP-β-CD treatment. HP-β-CD dramatically lowered the levels of Aβ42 in SwN2a cells, and the effects were persistent for 24 h after withdrawal. 4 mo of subcutaneous HP-β-CD administration significantly improved spatial learning and memory deficits in Tg19959 mice, diminished Aβ plaque deposition, and reduced tau immunoreactive dystrophic neurites. HP-β-CD lowered levels of Aβ42 in part by reducing β cleavage of the APP protein, and it also up-regulated the expression of genes involved in cholesterol transport and Aβ clearance. This is the first study to show neuroprotective effects of HP-β-CD in a transgenic mouse model of AD, both by reducing Aβ production and enhancing clearance mechanisms, which suggests a novel therapeutic strategy for AD.

Journal ArticleDOI
TL;DR: It is suggested that amyloid fibrils induce abnormal accumulation and overstabilization of raft domains in the cell membrane and provide a reasonable, although not unique, mechanistic and molecular explanation for fibril toxicity.
Abstract: The interaction of amyloid aggregates with the cell plasma membrane is currently considered among the basic mechanisms of neuronal dysfunction in amyloid neurodegeneration. We used amyloid oligomers and fibrils grown from the yeast prion Sup35p, responsible for the specific prion trait [PSI(+)], to investigate how membrane lipids modulate fibril interaction with the membranes of cultured H-END cells and cytotoxicity. Sup35p shares no homology with endogenous mammalian polypeptide chains. Thus, the generic toxicity of amyloids and the molecular events underlying cell degeneration can be investigated without interference with analogous polypeptides encoded by the cell genome. Sup35 fibrils bound to the cell membrane without increasing its permeability to Ca(2+). Fibril binding resulted in structural reorganization and aggregation of membrane rafts, with GM1 clustering and alteration of its mobility. Sup35 fibril binding was affected by GM1 or its sialic acid moiety, but not by cholesterol membrane content, with complete inhibition after treatment with fumonisin B1 or neuraminidase. Finally, cell impairment resulted from caspase-8 activation after Fas receptor translocation on fibril binding to the plasma membrane. Our observations suggest that amyloid fibrils induce abnormal accumulation and overstabilization of raft domains in the cell membrane and provide a reasonable, although not unique, mechanistic and molecular explanation for fibril toxicity.

Journal ArticleDOI
TL;DR: The results show that subtle changes in membrane lipid composition can greatly influence γ-secretase activity and processivity, suggesting that relatively small changes in lipid membrane composition may affect the risk of AD at least as much as presenilin or APP mutations do.
Abstract: The 19-transmembrane multisubunit γ-secretase complex generates the amyloid β-peptide (Aβ) of Alzheimer’s disease (AD) by intramembrane proteolysis of the β-amyloid precursor protein (APP). Despite substantial advances in elucidating how this protein complex functions, the effect of the local membrane lipid microenvironment on γ-secretase cleavage of substrates is still poorly understood. Using detergent-free proteoliposomes to reconstitute purified human γ-secretase, we examined the effects of fatty acyl (FA) chain length, saturation and double-bond isomerization, and membrane lipid polar headgroups on γ-secretase function. We analyzed γ-secretase activity and processivity [i.e., sequential cleavages in the APP transmembrane domain that convert longer Aβ species (e.g., Aβ46) into shorter ones (e.g., Aβ40)] by quantifying the APP intracellular domain (AICD) and various Aβ peptides, including via a bicine/urea gel system that detects multiple Aβ lengths. These assays revealed several trends. (1) Switching ...

Journal ArticleDOI
TL;DR: It is possible to assume that non-raft domains enriched in phospholipids containing PUFAs and vitamin E will be more accessible by molecular oxygen than lipid raft domains enrich in sphingolipid and cholesterol.

Journal ArticleDOI
TL;DR: Investigation of the effect of lipid head group charges on the signal transduction properties of the class A GPCR neurotensin (NT) receptor 1 (NTS1) under defined experimental conditions demonstrates that negatively charged lipids in the immediate vicinity of a nonvisual GPCRs modulate the G-protein-coupling step.

Journal ArticleDOI
TL;DR: The pathways by which lipids are synthesized at the ER and delivered to different cellular membranes are described, and the role of LTPs in lipid transport both in vitro and in intact cells are discussed.
Abstract: The transport of lipids from their synthesis site at the endoplasmic reticulum (ER) to different target membranes could be mediated by both vesicular and nonvesicular transport mechanisms. Nonvesicular lipid transport appears to be the major transport route of certain lipid species, and could be mediated by either spontaneous lipid transport or by lipid-transfer proteins (LTPs). Although nonvesicular lipid transport has been extensively studied for more than four decades, its underlying mechanism, advantage and regulation, have not been fully explored. In particular, the function of LTPs and their involvement in intracellular lipid movement remain largely controversial. In this article, we describe the pathways by which lipids are synthesized at the ER and delivered to different cellular membranes, and discuss the role of LTPs in lipid transport both in vitro and in intact cells.

Journal ArticleDOI
TL;DR: Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis and here it is found that a lipid flippase complex, composed of Lem3, Dnf1 or DNf2, has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polity, in yeast.
Abstract: Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis. Here we find that a lipid flippase complex, composed of Lem3, Dnf1 or Dnf2, has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polarity, in yeast. By using quantitative microscopy methods, we show that the flippase complex is required for fast dissociation of Cdc42 from the polar cortex by the guanine nucleotide dissociation inhibitor. A loss of flippase activity, or pharmacological blockage of the inward flipping of phosphatidylethanolamine, a phospholipid with a neutral head group, disrupts Cdc42 polarity maintained by guanine nucleotide dissociation inhibitor-mediated recycling. Phosphatidylethanolamine flipping may reduce the charge interaction between a Cdc42 carboxy-terminal cationic region with the plasma membrane inner leaflet, enriched for the negatively charged lipid phosphatidylserine. Using a reconstituted system with supported lipid bilayers, we show that the relative composition of phosphatidylethanolamine versus phosphatidylserine directly modulates Cdc42 extraction from the membrane by guanine nucleotide dissociation inhibitor.

Journal ArticleDOI
TL;DR: It is shown that TCR triggering by peptide–MHC complexes induces dissociation of the CD3ε cytoplasmic domain from the plasma membrane, and local changes in the lipid composition of TCR microclusters thus render theCD3ε Cytoplasmaic domain accessible during early stages of T cell activation.
Abstract: The CD3e and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3e immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3e residues were previously shown to be essential for CD3e and ζ membrane binding. Phosphatidylserine (PS) is the most abundant negatively charged lipid on the inner leaflet of the PM and makes a major contribution to membrane binding by the CD3e cytoplasmic domain. Here, we show that TCR triggering by peptide–MHC complexes induces dissociation of the CD3e cytoplasmic domain from the plasma membrane. Release of the CD3e cytoplasmic domain from the membrane is accompanied by a substantial focal reduction in negative charge and available PS in TCR microclusters. These changes in the lipid composition of TCR microclusters even occur when TCR signaling is blocked with a Src kinase inhibitor. Local changes in the lipid composition of TCR microclusters thus render the CD3e cytoplasmic domain accessible during early stages of T cell activation.

Journal Article
TL;DR: In this paper, a flexible surface model (FSM) is proposed to describe the balance of curvature and hydrophobic forces in lipid-protein interactions, which is used to explain the polymorphism of detergents and membrane phospholipids.
Abstract: Membrane biochemists are becoming increasingly aware of the role of lipid–protein interactions in diverse cellular functions. This review describes how conformational changes in membrane proteins, involving folding, stability, and membrane shape transitions, potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid–protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biom...

Journal ArticleDOI
TL;DR: It is found that bilayer thickness is a critical parameter affecting both total activity as well as cleavage specificity of γ-secretase, which may provide an approach to lower the generation of the pathogenic Aβ42/43 species.

Journal ArticleDOI
TL;DR: This review presents the different classes of fatty acids known to trigger toxic effects and inflammation, the cellular and subcellular targets of these fatty acids in the context of non-alcoholic fatty liver disease (NAFLD), and the mechanisms by which these effects are mediated.
Abstract: Fatty acids are known to serve as energetic substrates, key components of membrane lipids, and as substrates for the synthesis of signaling molecules and complex lipids. They are also known to be ligands either of membrane receptors involved in cell signaling or of nuclear receptors mediating gene regulation. Accumulation of fatty acids due to altered metabolism and/or unbalanced diet has been described to be toxic for several tissues, especially liver. In numerous cell types, cell death, cytokine secretion and activation of inflammatory processes appear to be a consequence of fatty acid accumulation. This review presents the different classes of fatty acids known to trigger toxic effects and inflammation, the cellular and subcellular targets of these fatty acids in the context of non-alcoholic fatty liver disease (NAFLD), and the mechanisms by which these effects are mediated.

Journal ArticleDOI
TL;DR: The curvature properties of a membrane are a key factor in the interactions of amphiphilic helical peptides in general, whose re-alignment and immersion preferences may be inferred in a straightforward manner from the lipid-shape concept.

Journal ArticleDOI
TL;DR: It is believed that the complex lipid bilayer more accurately describes a bacterial membrane and suggests the use of it in molecular dynamic simulations rather than simple POPE/POPG membranes.

Journal ArticleDOI
TL;DR: It is proposed that lipid droplets formation initiates spontaneously, solely as a consequence of neutral lipid synthesis, and this default pathway directs droplets into the cytoplasm where they accumulate in many lipid disorders.

Journal ArticleDOI
TL;DR: Direct infusion electrospray ionization triple quadrupole precursor scanning for three oxidized fatty acyl anions revealed 86 mass spectral peaks representing polar membrane lipids in extracts from Arabidopsis infected with Pseudomonas syringae pv tomato DC3000 expressing AvrRpt2 (PstAvr), forming the basis for a working hypothesis that the stress-specific signatures of ox-lipids are indicative of their functions.
Abstract: Direct infusion electrospray ionization triple quadrupole precursor scanning for three oxidized fatty acyl anions revealed 86 mass spectral peaks representing polar membrane lipids in extracts from Arabidopsis (Arabidopsis thaliana) infected with Pseudomonas syringae pv tomato DC3000 expressing AvrRpt2 (PstAvr). Quadrupole time-of-flight and Fourier transform ion cyclotron resonance mass spectrometry provided evidence for the presence of membrane lipids containing one or more oxidized acyl chains. The membrane lipids included molecular species of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, digalactosyldiacylglycerol, monogalactosyldiacylglycerol, and acylated monogalactosyldiacylglycerol. The oxidized chains were identified at the level of chemical formula and included C(18)H(27)O(3) (abbreviated 18:4-O, to indicate four double bond equivalents and one oxygen beyond the carbonyl group), C(18)H(29)O(3) (18:3-O), C(18)H(31)O(3) (18:2-O), C(18)H(29)O(4) (18:3-2O), C(18)H(31)O(4) (18:2-2O), and C(16)H(23)O(3) (16:4-O). Mass spectral signals from the polar oxidized lipid (ox-lipid) species were quantified in extracts of Arabidopsis leaves subjected to wounding, infection by PstAvr, infection by a virulent strain of P. syringae, and low temperature. Ox-lipids produced low amounts of mass spectral signal, 0.1% to 3.2% as much as obtained in typical direct infusion profiling of normal-chain membrane lipids of the same classes. Analysis of the oxidized membrane lipid species and normal-chain phosphatidic acids indicated that stress-induced ox-lipid composition differs from the basal ox-lipid composition. Additionally, different stresses result in the production of varied amounts, different timing, and different compositional patterns of stress-induced membrane lipids. These data form the basis for a working hypothesis that the stress-specific signatures of ox-lipids, like those of oxylipins, are indicative of their functions.