scispace - formally typeset
Search or ask a question

Showing papers on "MIMO published in 2014"


Journal ArticleDOI
TL;DR: While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios.
Abstract: Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.

6,184 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations


Journal ArticleDOI
TL;DR: This paper considers transmit precoding and receiver combining in mmWave systems with large antenna arrays and develops algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware.
Abstract: Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss than the microwave signals currently used in most wireless applications and all cellular systems. MmWave systems must therefore leverage large antenna arrays, made possible by the decrease in wavelength, to combat pathloss with beamforming gain. Beamforming with multiple data streams, known as precoding, can be used to further improve mmWave spectral efficiency. Both beamforming and precoding are done digitally at baseband in traditional multi-antenna systems. The high cost and power consumption of mixed-signal devices in mmWave systems, however, make analog processing in the RF domain more attractive. This hardware limitation restricts the feasible set of precoders and combiners that can be applied by practical mmWave transceivers. In this paper, we consider transmit precoding and receiver combining in mmWave systems with large antenna arrays. We exploit the spatial structure of mmWave channels to formulate the precoding/combining problem as a sparse reconstruction problem. Using the principle of basis pursuit, we develop algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware. We present numerical results on the performance of the proposed algorithms and show that they allow mmWave systems to approach their unconstrained performance limits, even when transceiver hardware constraints are considered.

3,146 citations


Journal ArticleDOI
TL;DR: A potential cellular architecture that separates indoor and outdoor scenarios is proposed, and various promising technologies for 5G wireless communication systems, such as massive MIMO, energy-efficient communications, cognitive radio networks, and visible light communications are discussed.
Abstract: The fourth generation wireless communication systems have been deployed or are soon to be deployed in many countries. However, with an explosion of wireless mobile devices and services, there are still some challenges that cannot be accommodated even by 4G, such as the spectrum crisis and high energy consumption. Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications and therefore have started research on fifth generation wireless systems that are expected to be deployed beyond 2020. In this article, we propose a potential cellular architecture that separates indoor and outdoor scenarios, and discuss various promising technologies for 5G wireless communication systems, such as massive MIMO, energy-efficient communications, cognitive radio networks, and visible light communications. Future challenges facing these potential technologies are also discussed.

2,048 citations


Journal ArticleDOI
TL;DR: This paper addresses the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells, and analyzes the energy efficiency and degrees of freedom provided by massive MIMO systems to enable efficient single-carrier transmission.
Abstract: Massive multiple-input multiple-output (MIMO) wireless communications refers to the idea equipping cellular base stations (BSs) with a very large number of antennas, and has been shown to potentially allow for orders of magnitude improvement in spectral and energy efficiency using relatively simple (linear) processing. In this paper, we present a comprehensive overview of state-of-the-art research on the topic, which has recently attracted considerable attention. We begin with an information theoretic analysis to illustrate the conjectured advantages of massive MIMO, and then we address implementation issues related to channel estimation, detection and precoding schemes. We particularly focus on the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells. We also analyze the energy efficiency achieved by massive MIMO systems, and demonstrate how the degrees of freedom provided by massive MIMO systems enable efficient single-carrier transmission. Finally, the challenges and opportunities associated with implementing massive MIMO in future wireless communications systems are discussed.

2,046 citations


Journal ArticleDOI
01 Jan 2014
TL;DR: In this paper, the authors present a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges.
Abstract: A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.

1,171 citations


Journal ArticleDOI
TL;DR: It is proved that the huge degrees of freedom offered by massive MIMO can be used to reduce the transmit power and/or to tolerate larger hardware impairments, which allows for the use of inexpensive and energy-efficient antenna elements.
Abstract: The use of large-scale antenna arrays can bring substantial improvements in energy and/or spectral efficiency to wireless systems due to the greatly improved spatial resolution and array gain. Recent works in the field of massive multiple-input multiple-output (MIMO) show that the user channels decorrelate when the number of antennas at the base stations (BSs) increases, thus strong signal gains are achievable with little interuser interference. Since these results rely on asymptotics, it is important to investigate whether the conventional system models are reasonable in this asymptotic regime. This paper considers a new system model that incorporates general transceiver hardware impairments at both the BSs (equipped with large antenna arrays) and the single-antenna user equipments (UEs). As opposed to the conventional case of ideal hardware, we show that hardware impairments create finite ceilings on the channel estimation accuracy and on the downlink/uplink capacity of each UE. Surprisingly, the capacity is mainly limited by the hardware at the UE, while the impact of impairments in the large-scale arrays vanishes asymptotically and interuser interference (in particular, pilot contamination) becomes negligible. Furthermore, we prove that the huge degrees of freedom offered by massive MIMO can be used to reduce the transmit power and/or to tolerate larger hardware impairments, which allows for the use of inexpensive and energy-efficient antenna elements.

841 citations


Journal ArticleDOI
TL;DR: How beamforming and precoding are different in MIMO mmWave systems than in their lower-frequency counterparts, due to different hardware constraints and channel characteristics are explained.
Abstract: Millimeter-wave communication is one way to alleviate the spectrum gridlock at lower frequencies while simultaneously providing high-bandwidth communication channels. MmWave makes use of MIMO through large antenna arrays at both the base station and the mobile station to provide sufficient received signal power. This article explains how beamforming and precoding are different in MIMO mmWave systems than in their lower-frequency counterparts, due to different hardware constraints and channel characteristics. Two potential architectures are reviewed: hybrid analog/digital precoding/combining and combining with low-resolution analog- to-digital converters. The potential gains and design challenges for these strategies are discussed, and future research directions are highlighted.

738 citations


Journal ArticleDOI
TL;DR: This paper proposes a smart combination of small cells, joint transmission coordinated multipoint (JT CoMP), and massive MIMO to enhance the spectral efficiency with affordable complexity and shows in measurements with macro-plus-smallcell scenarios that spectral efficiency can be improved by flexible clustering and efficient user selection.
Abstract: 5G will have to support a multitude of new applications with a wide variety of requirements, including higher peak and user data rates, reduced latency, enhanced indoor coverage, increased number of devices, and so on. The expected traffic growth in 10 or more years from now can be satisfied by the combined use of more spectrum, higher spectral efficiency, and densification of cells. The focus of the present article is on advanced techniques for higher spectral efficiency and improved coverage for cell edge users. We propose a smart combination of small cells, joint transmission coordinated multipoint (JT CoMP), and massive MIMO to enhance the spectral efficiency with affordable complexity. We review recent achievements in the transition from theoretical to practical concepts and note future research directions. We show in measurements with macro-plus-smallcell scenarios that spectral efficiency can be improved by flexible clustering and efficient user selection, and that adaptive feedback compression is beneficial to reduce the overhead significantly. Moreover, we show in measurements that fast feedback reporting combined with advanced channel prediction are able to mitigate the impairment effects of JT CoMP.

731 citations


Journal ArticleDOI
TL;DR: This paper extends the popular Wireless World Initiative for New Radio (WINNER) channel model with new features to make it as realistic as possible and can accurately predict the performance for an urban macro-cell setup with commercial high-gain antennas.
Abstract: Channel models are important tools to evaluate the performance of new concepts in mobile communications. However, there is a tradeoff between complexity and accuracy. In this paper, we extend the popular Wireless World Initiative for New Radio (WINNER) channel model with new features to make it as realistic as possible. Our approach enables more realistic evaluation results at an early stage of algorithm development. The new model supports 3-D propagation, 3-D antenna patterns, time evolving channel traces of arbitrary length, scenario transitions and variable terminal speeds. We validated the model by measurements in a coherent LTE advanced testbed in downtown Berlin, Germany. We then reproduced the same scenario in the model and compared several channel parameters (delay spread, path gain, K-factor, geometry factor and capacity). The results match very well and we can accurately predict the performance for an urban macro-cell setup with commercial high-gain antennas. At the same time, the computational complexity does not increase significantly and we can use all existing WINNER parameter tables. These artificial channels, having equivalent characteristics as measured data, enable virtual field trials long before prototypes are available.

679 citations


Journal ArticleDOI
TL;DR: The proposed hybrid precoding scheme, named phased-ZF (PZF), essentially applies phase-only control at the RF domain and then performs a low-dimensional baseband ZF precoding based on the effective channel seen from baseband.
Abstract: Massive multiple-input multiple-output (MIMO) is envisioned to offer considerable capacity improvement, but at the cost of high complexity of the hardware. In this paper, we propose a low-complexity hybrid precoding scheme to approach the performance of the traditional baseband zero-forcing (ZF) precoding (referred to as full-complexity ZF), which is considered a virtually optimal linear precoding scheme in massive MIMO systems. The proposed hybrid precoding scheme, named phased-ZF (PZF), essentially applies phase-only control at the RF domain and then performs a low-dimensional baseband ZF precoding based on the effective channel seen from baseband. Heavily quantized RF phase control up to 2 bits of precision is also considered and shown to incur very limited degradation. The proposed scheme is simulated in both ideal Rayleigh fading channels and sparsely scattered millimeter wave (mmWave) channels, both achieving highly desirable performance.

Journal ArticleDOI
TL;DR: This paper considers multi-user massive MIMO systems and proposes a distributed compressive CSIT estimation scheme so that the compressed measurements are observed at the users locally, while the CSIT recovery is performed at the base station jointly.
Abstract: To fully utilize the spatial multiplexing gains or array gains of massive MIMO, the channel state information must be obtained at the transmitter side (CSIT). However, conventional CSIT estimation approaches are not suitable for FDD massive MIMO systems because of the overwhelming training and feedback overhead. In this paper, we consider multi-user massive MIMO systems and deploy the compressive sensing (CS) technique to reduce the training as well as the feedback overhead in the CSIT estimation. The multi-user massive MIMO systems exhibits a hidden joint sparsity structure in the user channel matrices due to the shared local scatterers in the physical propagation environment. As such, instead of naively applying the conventional CS to the CSIT estimation, we propose a distributed compressive CSIT estimation scheme so that the compressed measurements are observed at the users locally, while the CSIT recovery is performed at the base station jointly. A joint orthogonal matching pursuit recovery algorithm is proposed to perform the CSIT recovery, with the capability of exploiting the hidden joint sparsity in the user channel matrices. We analyze the obtained CSIT quality in terms of the normalized mean absolute error, and through the closed-form expressions, we obtain simple insights into how the joint channel sparsity can be exploited to improve the CSIT recovery performance.

Journal ArticleDOI
TL;DR: This paper considers an MIMO multicell system where multiple mobile users ask for computation offloading to a common cloud server, and proposes an iterative algorithm, based on a novel successive convex approximation technique, converging to a local optimal solution of the original nonconvex problem.
Abstract: Migrating computational intensive tasks from mobile devices to more resourceful cloud servers is a promising technique to increase the computational capacity of mobile devices while saving their battery energy. In this paper, we consider a MIMO multicell system where multiple mobile users (MUs) ask for computation offloading to a common cloud server. We formulate the offloading problem as the joint optimization of the radio resources-the transmit precoding matrices of the MUs-and the computational resources-the CPU cycles/second assigned by the cloud to each MU-in order to minimize the overall users' energy consumption, while meeting latency constraints. The resulting optimization problem is nonconvex (in the objective function and constraints). Nevertheless, in the single-user case, we are able to express the global optimal solution in closed form. In the more challenging multiuser scenario, we propose an iterative algorithm, based on a novel successive convex approximation technique, converging to a local optimal solution of the original nonconvex problem. Then, we reformulate the algorithm in a distributed and parallel implementation across the radio access points, requiring only a limited coordination/signaling with the cloud. Numerical results show that the proposed schemes outperform disjoint optimization algorithms.

Journal ArticleDOI
TL;DR: This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk, and presents the prospects for SDM in optical transmission and networking.
Abstract: Space-division multiplexing (SDM) uses multiplicity of space channels to increase capacity for optical communication. It is applicable for optical communication in both free space and guided waves. This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk. Multiple-input–multiple-output (MIMO) equalization methods developed for wireless communication can be applied as an electronic method to equalize mode crosstalk. Optical approaches, including differential modal group delay management, strong mode coupling, and multicore fibers, are necessary to bring the computational complexity for MIMO mode crosstalk equalization to practical levels. Progress in passive devices, such as (de)multiplexers, and active devices, such as amplifiers and switches, which are considered straightforward challenges in comparison with mode crosstalk, are reviewed. Finally, we present the prospects for SDM in optical transmission and networking.

Journal ArticleDOI
TL;DR: This tutorial explores the fundamental issues involved in selecting the best communications approaches for mmWave frequencies, and provides insights, challenges, and appropriate uses of each MIMO technique based on early knowledge of the mmWave propagation environment.
Abstract: The use of mmWave frequencies for wireless communications offers channel bandwidths far greater than previously available, while enabling dozens or even hundreds of antenna elements to be used at the user equipment, base stations, and access points. To date, MIMO techniques, such as spatial multiplexing, beamforming, and diversity, have been widely deployed in lower-frequency systems such as IEEE 802.11n/ac (wireless local area networks) and 3GPP LTE 4G cellphone standards. Given the tiny wavelengths associated with mmWave, coupled with differences in the propagation and antennas used, it is unclear how well spatial multiplexing with multiple streams will be suited to future mmWave mobile communications. This tutorial explores the fundamental issues involved in selecting the best communications approaches for mmWave frequencies, and provides insights, challenges, and appropriate uses of each MIMO technique based on early knowledge of the mmWave propagation environment.

01 Jan 2014
TL;DR: This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM- MIMO.
Abstract: A key challenge of future mobile communication research is to strike an attractive compromise between wire- less network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, espe- cially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless commu- nications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communica- tions, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Further- more, it has received sufficient research attention to be im- plemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.

Journal ArticleDOI
05 Mar 2014
TL;DR: A subspace projection to improve channel estimation in massive multi-antenna systems is proposed and analyzed and can mitigate the pilot contamination problem without the need for coordination among cells.
Abstract: A subspace projection to improve channel estimation in massive multi-antenna systems is proposed and analyzed. Together with power-controlled hand-off, it can mitigate the pilot contamination problem without the need for coordination among cells. The proposed method is blind in the sense that it does not require pilot data to find the appropriate subspace. It is based on the theory of large random matrices that predicts that the eigenvalue spectra of large sample covariance matrices can asymptotically decompose into disjoint bulks as the matrix size grows large. Random matrix and free probability theory are utilized to predict under which system parameters such a bulk decomposition takes place. Simulation results are provided to confirm that the proposed method outperforms conventional linear channel estimation if bulk separation occurs.

01 Jan 2014
TL;DR: Presents a prolog to the paper, "Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation."

Journal ArticleDOI
TL;DR: It is found that regardless of the Ricean K-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas grows large, while the transmit power of each user can be scaled down proportionally to 1/M.
Abstract: This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean K-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas,, grows large, while the transmit power of each user can be scaled down proportionally to. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean K-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to 1 root M. In addition, we show that with an increasing Ricean K-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers.

Journal ArticleDOI
TL;DR: Practical open-loop and closed-loop training frameworks are proposed that offer better performance in the data communication phase, especially when the signal-to-noise ratio is low, the number of transmit antennas is large, or prior channel estimates are not accurate at the beginning of the communication setup, all of which would be mostly beneficial for massive MIMO systems.
Abstract: The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. To reduce the overhead of the downlink training phase, we propose practical open-loop and closed-loop training frameworks in this paper. We assume the base station and the user share a common set of training signals in advance. In open-loop training, the base station transmits training signals in a round-robin manner, and the user successively estimates the current channel using long-term channel statistics such as temporal and spatial correlations and previous channel estimates. In closed-loop training, the user feeds back the best training signal to be sent in the future based on channel prediction and the previously received training signals. With a small amount of feedback from the user to the base station, closed-loop training offers better performance in the data communication phase, especially when the signal-to-noise ratio is low, the number of transmit antennas is large, or prior channel estimates are not accurate at the beginning of the communication setup, all of which would be mostly beneficial for massive MIMO systems.

Journal ArticleDOI
TL;DR: The principal finding is that outage capacity, despite being an asymptotic quantity, is a sharp proxy for the finite-blocklength fundamental limits of slow-fading channels.
Abstract: This paper investigates the maximal achievable rate for a given blocklength and error probability over quasi-static multiple-input multiple-output fading channels, with and without channel state information at the transmitter and/or the receiver. The principal finding is that outage capacity, despite being an asymptotic quantity, is a sharp proxy for the finite-blocklength fundamental limits of slow-fading channels. Specifically, the channel dispersion is shown to be zero regardless of whether the fading realizations are available at both transmitter and receiver, at only one of them, or at neither of them. These results follow from analytically tractable converse and achievability bounds. Numerical evaluation of these bounds verifies that zero dispersion may indeed imply fast convergence to the outage capacity as the blocklength increases. In the example of a particular 1 $\,\times\,$ 2 single-input multiple-output Rician fading channel, the blocklength required to achieve 90% of capacity is about an order of magnitude smaller compared with the blocklength required for an AWGN channel with the same capacity. For this specific scenario, the coding/decoding schemes adopted in the LTE-Advanced standard are benchmarked against the finite-blocklength achievability and converse bounds.

Journal ArticleDOI
TL;DR: Two sequential optimization procedures to maximize the Signal to Interference plus Noise Ratio (SINR) are presented, accounting for a constant modulus constraint as well as a similarity constraint involving a known radar waveform with some desired properties.
Abstract: We consider the problem of waveform design for Multiple-Input Multiple-Output (MIMO) radar in the presence of signal-dependent interference embedded in white Gaussian disturbance. We present two sequential optimization procedures to maximize the Signal to Interference plus Noise Ratio (SINR), accounting for a constant modulus constraint as well as a similarity constraint involving a known radar waveform with some desired properties (e.g., in terms of pulse compression and ambiguity). The presented sequential optimization algorithms, based on a relaxation method, yield solutions with good accuracy. Their computational complexity is linear in the number of iterations and trials in the randomized procedure and polynomial in the receive filter length. Finally, we evaluate the proposed techniques, by considering their SINR performance, beam pattern as well as pulse compression property, via numerical simulations.

Proceedings ArticleDOI
02 Apr 2014
TL;DR: The design and implementation of the first in-band full duplex WiFi-PHY based MIMO radios that practically achieve the theoretical doubling of throughput and a novel digital estimation and cancellation algorithms that eliminate almost all interference.
Abstract: This paper presents the design and implementation of the first in-band full duplex WiFi-PHY based MIMO radios that practically achieve the theoretical doubling of throughput. Our design solves two fundamental challenges associated with MIMO full duplex: complexity and performance. Our design achieves full duplex with a cancellation design whose complexity scales almost linearly with the number of antennas, this complexity is close to the optimal possible. Further we also design novel digital estimation and cancellation algorithms that eliminate almost all interference and achieves the same performance as a single antenna full duplex SISO system, which is again the best possible performance. We prototype our design by building our own analog circuit boards and integrating them with a WiFi-PHY compatible standard WARP software radio implementation. We show experimentally that our design works robustly in noisy indoor environments, and provides close to the expected theoretical doubling of throughput in practice.

Journal ArticleDOI
TL;DR: In this paper, the problem of user grouping for two different objectives, namely, maximizing spatial multiplexing and maximizing total received power, was formulated in a graph-theoretic framework.
Abstract: Massive MIMO systems are well-suited for mm-Wave communications, as large arrays can be built with reasonable form factors, and the high array gains enable reasonable coverage even for outdoor communications. One of the main obstacles for using such systems in frequency-division duplex mode, namely, the high overhead for the feedback of channel state information (CSI) to the transmitter, can be mitigated by the recently proposed joint spatial division and multiplexing (JSDM) algorithm. In this paper, we analyze the performance of this algorithm in some realistic propagation channels that take into account the partial overlap of the angular spectra from different users, as well as the sparsity of mm-Wave channels. We formulate the problem of user grouping for two different objectives, namely, maximizing spatial multiplexing and maximizing total received power in a graph-theoretic framework. As the resulting problems are numerically difficult, we proposed (sub optimum) greedy algorithms as efficient solution methods. Numerical examples show that the different algorithms may be superior in different settings. We furthermore develop a new, “degenerate” version of JSDM that only requires average CSI at the transmitter and thus greatly reduces the computational burden. Evaluations in propagation channels obtained from ray tracing results, as well as in measured outdoor channels, show that this low-complexity version performs surprisingly well in mm-Wave channels.

Journal ArticleDOI
TL;DR: JSDM with simple opportunistic user selection is able to achieve the same scaling law of the system capacity with full channel state information and a low-overhead probabilistic scheduling algorithm is proposed that selects the users at random with probabilities derived from large-system random matrix analysis.
Abstract: Joint Spatial Division and Multiplexing (JSDM) is a downlink multiuser MIMO scheme recently proposed by the authors in order to enable “massive MIMO” gains and simplified system operations for Frequency Division Duplexing (FDD) systems. The key idea lies in partitioning the users into groups with approximately similar channel covariance eigenvectors and serving these groups by using two-stage downlink precoding scheme obtained as the concatenation of a pre-beamforming matrix, that depends only on the channel second-order statistics, with a multiuser MIMO linear precoding matrix, which is a function of the effective channels including pre-beamforming. The role of pre-beamforming is to reduce the dimensionality of the effective channel by exploiting the near-orthogonality of the eigenspaces of the channel covariances of the different user groups. This paper is an extension of our initial work on JSDM, and addresses some important practical issues. First, we focus on the regime of finite number of antennas and large number of users and show that JSDM with simple opportunistic user selection is able to achieve the same scaling law of the system capacity with full channel state information. Next, we consider the large-system regime (both antennas and users growing large) and propose a simple scheme for user grouping in a realistic setting where users have different angles of arrival and angular spreads. Finally, we propose a low-overhead probabilistic scheduling algorithm that selects the users at random with probabilities derived from large-system random matrix analysis. Since only the pre-selected users are required to feedback their channel state information, the proposed scheme realizes important savings in the CSIT feedback.

Journal ArticleDOI
TL;DR: This work proposes a new approximate matrix inversion algorithm relying on a Neumann series expansion, which substantially reduces the complexity of linear data detection in single-carrier frequency-division multiple access (SC-FDMA)-based large-scale MIMO systems.
Abstract: Large-scale (or massive) multiple-input multiple-out put (MIMO) is expected to be one of the key technologies in next-generation multi-user cellular systems based on the upcoming 3GPP LTE Release 12 standard, for example. In this work, we propose-to the best of our knowledge-the first VLSI design enabling high-throughput data detection in single-carrier frequency-division multiple access (SC-FDMA)-based large-scale MIMO systems. We propose a new approximate matrix inversion algorithm relying on a Neumann series expansion, which substantially reduces the complexity of linear data detection. We analyze the associated error, and we compare its performance and complexity to those of an exact linear detector. We present corresponding VLSI architectures, which perform exact and approximate soft-output detection for large-scale MIMO systems with various antenna/user configurations. Reference implementation results for a Xilinx Virtex-7 XC7VX980T FPGA show that our designs are able to achieve more than 600 Mb/s for a 128 antenna, 8 user 3GPP LTE-based large-scale MIMO system. We finally provide a performance/complexity trade-off comparison using the presented FPGA designs, which reveals that the detector circuit of choice is determined by the ratio between BS antennas and users, as well as the desired error-rate performance.

Journal ArticleDOI
TL;DR: This work investigates RFID MIMO systems where the channel fading encountered has different statistics than the classical Rayleigh fading model, and finds the trade off between diversity order and spatial multiplexing gains are distinct from wide-area MIMo.
Abstract: Radio Frequency IDentification (RFID) is intended to supplant legacy (optical) bar code scanning technology found in many logistic and retail applications. RFID is distinguished by inexpensive, low power and compact form factor tags, whose longevity and efficacy are predicated on using passive communication techniques and on-tag power harvesting. Such tags employ backscatter modulation, which does not require any active RF components. As a result, backscatter has become an attractive design choice for short-range communications in power constrained wireless sensor networking scenarios. The purpose of this work is two-fold. First, it aims to expose backscatter communication as an emerging topic to a communication systems-theoretic audience. Since backscatter modulation and on-tag power harvesting efficiency are coupled, it is necessary to re-examine notions of power and spectral efficiency from an energy-constraint perspective; this leads to novel coded modulation schemes for future RFID systems. Further, we investigate RFID MIMO systems where the channel fading encountered has different statistics than the classical Rayleigh fading model. In turn,the trade off between diversity order and spatial multiplexing gains are distinct from wide-area MIMO.

Journal ArticleDOI
TL;DR: This paper considers secure downlink transmission in a multicell massive MIMO system with matched-filter precoding and artificial noise (AN) generation at the base station (BS) in the presence of a passive multiantenna eavesdropper, and considers two different AN shaping matrices.
Abstract: In this paper, we consider physical layer security provisioning in multicell massive multiple-input-multiple-output (MIMO) systems. Specifically, we consider secure downlink transmission in a multicell massive MIMO system with matched-filter precoding and artificial noise (AN) generation at the base station (BS) in the presence of a passive multiantenna eavesdropper. We investigate the resulting achievable ergodic secrecy rate and the secrecy outage probability for the cases of perfect training and pilot contamination. Thereby, we consider two different AN shaping matrices, namely, the conventional AN shaping matrix, where the AN is transmitted in the null space of the matrix formed by all user channels, and a random AN shaping matrix, which avoids the complexity associated with finding the null space of a large matrix. Our analytical and numerical results reveal the following, in multicell massive MIMO systems employing matched-filter precoding: 1) AN generation is required to achieve a positive ergodic secrecy rate if the user and the eavesdropper experience the same path loss; 2) even with AN generation, secure transmission may not be possible if the number of eavesdropper antennas is too large and not enough power is allocated to channel estimation; 3) for a given fraction of power allocated to AN and a given number of users, in case of pilot contamination, the ergodic secrecy rate is not a monotonically increasing function of the number of BS antennas; and 4) random AN shaping matrices provide a favorable performance/complexity tradeoff and are an attractive alternative to conventional AN shaping matrices.

Journal ArticleDOI
TL;DR: This paper reviews advanced radar architectures that employ multiple transmit and multiple receive antennas to improve the performance of future synthetic aperture radar (SAR) systems and introduces a new class of short-term shift-orthogonal waveforms, which are applicable for MIMO-SAR imaging without interference.
Abstract: This paper reviews advanced radar architectures that employ multiple transmit and multiple receive antennas to improve the performance of future synthetic aperture radar (SAR) systems. These advanced architectures have been dubbed multiple-input multiple-output SAR (MIMO-SAR) in analogy to MIMO communication systems. Considerable confusion arose, however, with regard to the selection of suitable waveforms for the simultaneous transmission via multiple channels. It is shown that the mere use of orthogonal waveforms is insufficient for the desired performance improvement in view of most SAR applications. As a solution to this fundamental MIMO-SAR challenge, a new class of short-term shift-orthogonal waveforms is introduced. The short-term shift orthogonality avoids mutual interferences from the radar echoes of closely spaced scatterers, while interferences from more distant scatterers are suppressed by digital beamforming on receive in elevation. Further insights can be gained by considering the data acquisition of a side-looking imaging radar in a 3-D information cube. It becomes evident that the suggested waveforms fill different subspaces that can be individually accessed by a multichannel receiver. For completeness, the new class of short-term shift-orthogonal waveforms is also compared to a recently proposed pair of orthogonal frequency-division multiplexing waveforms. It is shown that both sets of waveforms require essentially the same principle of range time to elevation angle conversion via a multichannel receiver in order to be applicable for MIMO-SAR imaging without interference.

Proceedings ArticleDOI
01 Dec 2014
TL;DR: The design goals of the testbed are detailed, the signaling and system architecture are discussed, and initial measured results for a uplink Massive MIMO over-the-air transmission from four single-antenna UEs to 100 BS antennas are shown.
Abstract: Massive multiple-input multiple-output (MIMO) is one of the main candidates to be included in the fifth generation (5G) cellular systems. For further system development it is desirable to have real-time testbeds showing possibilities and limitations of the technology. In this paper we describe the Lund University Massive MIMO testbed — LuMaMi. It is a flexible testbed where the base station operates with up to 100 coherent radio-frequency transceiver chains based on software radio technology. Orthogonal Frequency Division Multiplex (OFDM) based signaling is used for each of the 10 simultaneous users served in the 20 MHz bandwidth. Real time MIMO precoding and decoding is distributed across 50 Xilinx Kintex-7 FPGAs with PCI-Express interconnects. The unique features of this system are: (i) high throughput processing of 384 Gbps of real time baseband data in both the transmit and receive directions, (ii) low-latency architecture with channel estimate to precoder turnaround of less than 500 micro seconds, and (iii) a flexible extension up to 128 antennas. We detail the design goals of the testbed, discuss the signaling and system architecture, and show initial measured results for a uplink Massive MIMO over-the-air transmission from four single-antenna UEs to 100 BS antennas.