scispace - formally typeset
Search or ask a question

Showing papers on "Molecular breeding published in 2019"


Journal ArticleDOI
TL;DR: This review provides a systemic glimpse of breeding methods from conventional to the latest innovation in molecular development of drought-tolerant rice variety and comprehensively review the available information on drought-resistant genes, QTL analysis, gene transformation and marker-assisted selection.
Abstract: Drought is the leading threat to agricultural food production, especially in the cultivation of rice, a semi-aquatic plant. Drought tolerance is a complex quantitative trait with a complicated phenotype that affects different developmental stages in plants. The level of susceptibility or tolerance of rice to several drought conditions is coordinated by the action of different drought-responsive genes in relation with other stress components which stimulate signal transduction pathways. Interdisciplinary researchers have broken the complex mechanism of plant tolerance using various methods such as genetic engineering or marker-assisted selection to develop a new cultivar with improved drought resistance. The main objectives of this review were to highlight the current method of developing a durable drought-resistant rice variety through conventional breeding and the use of biotechnological tools and to comprehensively review the available information on drought-resistant genes, QTL analysis, gene transformation and marker-assisted selection. The response, indicators, causes, and adaptation processes to the drought stress were discussed in the review. Overall, this review provides a systemic glimpse of breeding methods from conventional to the latest innovation in molecular development of drought-tolerant rice variety. This information could serve as guidance for researchers and rice breeders.

128 citations


Journal ArticleDOI
TL;DR: It is concluded that sustained public investment in breeding plays a key role in delivering future mass‐scale deployment of PBCs.
Abstract: Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output-input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed-based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass-scale deployment of PBCs.

107 citations


Journal ArticleDOI
TL;DR: Although, molecular breeding cannot be taken as a substitute for conventional breeding, molecular approach for combating BLB disease in rice is worthwhile given the demand for increased production of rice in a fast growing population of the authors' society.
Abstract: Breeding for disease resistant varieties remains very effective and economical in controlling the bacterial leaf blight (BLB) of rice. Breeders have played a major role in developing resistant rice varieties against the BLB infection which has been adjudged to be a major disease causing significant yield reduction in rice. It would be difficult to select rice crops with multiple genes of resistance using the conventional approach alone. This is due to masking effect of genes including epistasis. In addition, conventional breeding takes a lot of time before a gene of interest can be introgressed. Linkage drag is also a major challenge in conventional approach. Molecular breeding involving markers has facilitated the characterization and introgression of BLB disease resistance genes. Biotechnology has brought another innovation in form of genetic engineering (transgenesis) of rice. Although, molecular breeding cannot be taken as a substitute for conventional breeding, molecular approach for combating BLB disease in rice is worthwhile given the demand for increased production of rice in a fast growing population of our society. This present article highlights the recent progress from conventional to molecular approach in breeding for BLB disease resistant rice varieties.

104 citations


Journal ArticleDOI
TL;DR: A comprehensive analysis of peach evolution based on genome sequences of 480 wild and cultivated accessions provides evidence supporting that distinct phases of domestication and improvement have led to an increase in fruit size and taste and extended its geographic distribution.
Abstract: Human selection has a long history of transforming crop genomes. Peach (Prunus persica) has undergone more than 5000 years of domestication that led to remarkable changes in a series of agronomically important traits, but genetic bases underlying these changes and the effects of artificial selection on genomic diversity are not well understood. Here, we report a comprehensive analysis of peach evolution based on genome sequences of 480 wild and cultivated accessions. By focusing on a set of quantitative trait loci (QTLs), we provide evidence supporting that distinct phases of domestication and improvement have led to an increase in fruit size and taste and extended its geographic distribution. Fruit size was predominantly selected during domestication, and selection for large fruits has led to the loss of genetic diversity in several fruit weight QTLs. In contrast, fruit taste-related QTLs were successively selected for by domestication and improvement, with more QTLs selected for during improvement. Genome-wide association studies of 11 agronomic traits suggest a set of candidate genes controlling these traits and potential markers for molecular breeding. Candidate loci for genes that contributed to the adaption to low-chill regions were identified. Furthermore, the genomic bases of divergent selection for fruit texture and local breeding for different flavors between Asian and European/North American cultivars were also determined. Our results elucidate the genetic basis of peach evolution and provide new resources for future genomics-guided peach breeding.

96 citations


Journal ArticleDOI
TL;DR: This review summarizes the recent achievements in conventional and modern molecular breeding methods and emerging omics technologies and discusses their future applications for improving the agronomic and horticultural characteristics of chrysanthemum.
Abstract: Chrysanthemum (Chrysanthemum morifolium Ramat.) is a leading flower with applied value worldwide. Developing new chrysanthemum cultivars with novel characteristics such as new flower colors and shapes, plant architectures, flowering times, postharvest quality, and biotic and abiotic stress tolerance in a time- and cost-efficient manner is the ultimate goal for breeders. Various breeding strategies have been employed to improve the aforementioned traits, ranging from conventional techniques, including crossbreeding and mutation breeding, to a series of molecular breeding methods, including transgenic technology, genome editing, and marker-assisted selection (MAS). In addition, the recent extensive advances in high-throughput technologies, especially genomics, transcriptomics, proteomics, metabolomics, and microbiomics, which are collectively referred to as omics platforms, have led to the collection of substantial amounts of data. Integration of these omics data with phenotypic information will enable the identification of genes/pathways responsible for important traits. Several attempts have been made to use emerging molecular and omics methods with the aim of accelerating the breeding of chrysanthemum. However, applying the findings of such studies to practical chrysanthemum breeding remains a considerable challenge, primarily due to the high heterozygosity and polyploidy of the species. This review summarizes the recent achievements in conventional and modern molecular breeding methods and emerging omics technologies and discusses their future applications for improving the agronomic and horticultural characteristics of chrysanthemum.

84 citations


Journal ArticleDOI
TL;DR: Highly consistent marker genotypes were obtained and highly consistent phylogenetic relationships were generated by using four marker panels and two genotype panels, providing strong evidence for the reliability of SNP markers and GBTS genotyping platform.
Abstract: The development of a high-throughput genotyping platform with high quality, flexibility, and affordable genotyping cost is critical for marker-assisted breeding. In this study, a genotyping by target sequencing (GBTS) platform was developed in maize, which can be realized for a small number of markers (several to 5 K) through multiplex PCR (GenoPlexs) and for a large number of markers (1 to 45 K) through in-solution capture. The later was used for development of four SNP marker panels (GenoBaits Maize) containing 20 K, 10 K, 5 K, and 1 K markers. Two genotype panels, one consisting 96 representative worldwide maize inbred lines and the other containing 387 breeding lines developed in our maize breeding programs, were used to test and validate the developed marker panels. First, a 20 K SNP panel, with markers evenly distributed across maize genome, was developed from a 55 K SNP array with improved genome coverage. From this single marker panel, 20 K, 10 K, 5 K, and 1 K SNP markers can be generated by sequencing the samples at the average sequencing depths of 50×, 20×, 7.5×, and 2.5×, respectively. Highly consistent marker genotypes were obtained between the four marker panels and the 55 K array (over 95%) and between two biological replications (over 98%). Also, highly consistent phylogenetic relationships were generated by using four marker panels and two genotype panels, providing strong evidence for the reliability of SNP markers and GBTS genotyping platform. Cost-benefit analysis indicated that the genotypic selection cost based on the GBTS in maize was lower than phenotypic selection, allowing GBTS an affordable genotyping platform for marker-assisted breeding. Integration of this affordable genotyping platform with other breeding platforms and open-source breeding network would greatly facilitate the molecular breeding activities in small- and medium-size companies and developing countries. The four marker panels could be used for many fields of marker application, including germplasm evaluation, genetic mapping, marker-assisted selection (including genomic selection), and plant variety protection.

66 citations


Journal ArticleDOI
TL;DR: This review describes the recent advances in the study of the effect of drought stress on morpho-biochemical changes in soybean and the application of plant growth-promoting rhizobacteria, marker assisted selection, and different omics approaches to unravel the mechanism of drought tolerance.

64 citations


Journal ArticleDOI
15 Jul 2019
TL;DR: The global challenges facing demand and supply of wheat, the strategies to increase breeding efficiency and genetic gains, the impacts of the international wheat breeding and its progress, and future strategies to increased wheat production while conserving the natural resource base are reviewed.
Abstract: Wheat is the leading global food crop providing 19% of the daily calories and 21% of protein requirements for humans. The wheat production has increased from 220 million tons in 1961 to 750 million tons in 2018 with total production area of 220 million hectares which showed insignificant changes across years. The development of high yielding and widely adapted semi-dwarf input responsive wheat varieties, application of fertilizer, pesticides, irrigation, mechanization and implementation of favorable policies have contributed to such significant jump in wheat production at global level. The average annual genetic gain of wheat has been reported to be 1% while the demand for wheat increases by 1.7% annually reaching a total of 1 billion tons in 2050. To this end, conventional and molecular breeding strategies and approaches such as inter-country shuttle breeding, doubled haploid breeding, speed breeding, marker assisted selection, genomic selection, key location phenotyping and hybrid wheat breeding should be utilized intensively. The international wheat breeding programs at CIMMYT and ICARDA have developed and distributed germplasm to the world in the past 4 or more decades during which hundreds of high yielding and widely adapted wheat varieties with resistance tolerance to the major prevailing abiotic and biotic stresses have been released and adopted. Breeding progress or genetic gains in wheat has been determined by different authors with average relative gains reaching up to 2.5% per year. This paper reviews the global challenges facing demand and supply of wheat, the strategies to increase breeding efficiency and genetic gains, the impacts of the international wheat breeding and its progress, and future strategies to increase wheat production while conserving the natural resource base.

59 citations


Journal ArticleDOI
08 Apr 2019-Rice
TL;DR: The core KASP arrays developed in this study were efficient and versatile for rice germplasm assessment, genetic diversity and population evaluation and are valuable for promoting SNP molecular breeding in rice.
Abstract: The development and utilization of genetic markers play a pivotal role in marker-assisted breeding of rice cultivars during pyramiding of valuable genes. Among molecular markers, SNPs have become the most promising due to their wide distribution within genomes and suitability for high -throughput automated genotyping. Although metadata of SNPs have been identified via next generation sequencing in rice, a large gap between the development of SNP markers and the application in breeding still exists. To promote the application of SNP markers based on the KASP (Kompetitive Allele-Specific PCR) method in rice breeding, a set of core SNP arrays was built via the screening of SNP databases and literature resources based on the KASP method. Five hundred and ninety six SNPs classified into eight subsets including quality control, indica-indica variation, highly polymorphic, functional genes, key genes targeting sites, gene cloned region, important trait associated and gap filling sites were chosen to design KASP primers and 565 out of them were successfully designed, and the assay design success rate was 94.8%. Finally, 467 out of the 565 successfully-designed SNPs can display diversity at the loci were used to develop a set of core SNP arrays. To evaluate the application value of the core SNP markers in rice breeding, 481 rice germplasms were genotyped with three functional KASP markers designed from the sequences of GBSSI, SSIIa, and Badh2 from the core SNP arrays for estimation of their grain quality performance. Eighteen rice lines, including Xiangwanxian 13, Basmati 370, Ruanhua A, and PR 33319–9–1-1-5-3-5-4-1, harbor all three favorable alleles. The core KASP arrays were also used for rice germplasm assessment, genetic diversity and population evaluation. Four hundred and eighty-one rice germplasms were divided into 3 groups: POP1, POP2 and POP3. POP1 and POP2 were indica rice subgroups consisting of 263 and 186 rice germplasms, respectively. POP3 was a japonica rice subgroup consisting of 32 rice germplasms. The average FST value for the three subgroups was 0.3501; the FST value of POP1 and POP3 was the largest (0.5482), while that of POP1 and POP2 was the smallest (0.0721). The results showed that the genetic distance between the japonica and indica rice subspecies was large, indicating that the core SNP markers were effective at discriminating the population structure of the germplasms. Finally, the core KASP arrays were used for association analysis with milled grain traits. A total of 31 KASP markers were significantly associated (P < 0.01) with ML and the LWR. Among the 31 markers, 13 were developed based on cloned genes or on identified loci related to yield traits. Notably, several KASP markers associated with grain quality were also found to be associated with brown planthopper resistance or green leafhopper resistance simultaneously. The core KASP arrays developed in our study were efficient and versatile for rice germplasm assessment, genetic diversity and population evaluation and are valuable for promoting SNP molecular breeding in rice. Our study demonstrated that useful assays combined with molecular breeding can be exploited for important economic trait improvement in rice breeding.

57 citations


Journal ArticleDOI
TL;DR: A rice sub-database of an integrated omics knowledgebase (MBKbase-rice, www.mbKbase.org/rice), which integrates rice germplasm information, multiple reference genomes with a united set of gene loci, population sequencing data, phenotypic data, known alleles and gene expression data, is reported.
Abstract: To date, large amounts of genomic and phenotypic data have been accumulated in the fields of crop genetics and genomic research, and the data are increasing very quickly. However, the bottleneck to using big data in breeding is integrating the data and developing tools for revealing the relationship between genotypes and phenotypes. Here, we report a rice sub-database of an integrated omics knowledgebase (MBKbase-rice, www.mbkbase.org/rice), which integrates rice germplasm information, multiple reference genomes with a united set of gene loci, population sequencing data, phenotypic data, known alleles and gene expression data. In addition to basic data search functions, MBKbase provides advanced web tools for genotype searches at the population level and for visually displaying the relationship between genotypes and phenotypes. Furthermore, the database also provides online tools for comparing two samples by their genotypes and finding target germplasms by genotype or phenotype information, as well as for analyzing the user submitted SNP or sequence data to find important alleles in the germplasm. A soybean sub-database is planned for release in 3 months and wheat and maize will be added in 1-2 years. The data and tools integrated in MBKbase will facilitate research in crop functional genomics and molecular breeding.

57 citations


Journal ArticleDOI
TL;DR: A reference single nucleotide polymorphism dataset covering over 10,000 sorghum genotypes was developed for the crop research community and the value of the dataset was demonstrated with novel candidate genes for mesocarp thickness, plant height, and other traits.
Abstract: Mining crop genomic variation can facilitate the genetic research of complex traits and molecular breeding. In sorghum [ L. (Moench)], several large-scale single nucleotide polymorphism (SNP) datasets have been generated using genotyping-by-sequencing of KI reduced representation libraries. However, data reuse has been impeded by differences in reference genome coordinates among datasets. To facilitate reuse of these data, we constructed and characterized an integrated 459,304-SNP dataset for 10,323 sorghum genotypes on the version 3.1 reference genome. The SNP distribution showed high enrichment in subtelomeric chromosome arms and in genic regions (48% of SNPs) and was highly correlated ( = 0.82) to the distribution of KI restriction sites. The genetic structure reflected population differences by botanical race, as well as familial structure among recombinant inbred lines (RILs). Faster linkage disequilibrium decay was observed in the diversity panel than in the RILs, as expected, given the greater opportunity for recombination in diverse populations. To validate the quality and utility of the integrated SNP dataset, we used genome-wide association studies (GWAS) of genebank phenotype data, precisely mapping several known genes (e.g and ) and identifying novel associations for other traits. We further validated the dataset with GWAS of new and published plant height and flowering time data in a nested association mapping population, precisely mapping known genes and identifying epistatic interactions underlying both traits. These findings validate this integrated SNP dataset as a useful genomics resource for sorghum genetics and breeding.

Book ChapterDOI
08 Oct 2019
TL;DR: The introduction and improvement of soybeans in the United States is described, which describes classical and molecular breeding, biotechnology, biotic and abiotic stress management, and soybean agronomics and cropping systems improvements that maximize soybean productivity, profitability and sustainability.
Abstract: Soybean, Glycine max (L.) Merr., has been grown as a forage and as an important protein and oil crop for thousands of years. Domestication, breeding improvements and enhanced cropping systems have made soybeans the most cultivated and utilized oilseed crop globally. Soybeans provide a high-quality protein source for livestock and aquaculture, oil for industrial uses and a valued component of human diets. Originating in China and Eastern Asia, today 80–85% of the world’s soybeans, approximately 88 million ha, are grown in the Western Hemisphere. United States soybean breeding and development efforts for over 80 years have transitioned from primarily universities and United States Department of Agriculture (USDA) programs to private company-led investments in commercial cultivar development. Soybean breeders continuously adapt tools and technologies that encompass classical breeding, mutation breeding and marker-assisted selection, biotechnology and transgenic approaches, gene silencing, and genome editing. In addition to breeding technologies, improved agronomics, precision agriculture and digital agriculture have advanced soybean production and profitability. The primary goals of soybean breeding and cropping systems advances include yield improvement, increased seed protein and oil composition and quality, and yield preservation through weed, pathogen, insect pest and abiotic stress resistance and management. This chapter primarily describes the introduction and improvement of soybeans in the United States. Contributing authors describe classical and molecular breeding, biotechnology, biotic and abiotic stress management, and soybean agronomics and cropping systems improvements that maximize soybean productivity, profitability and sustainability to supply a continually increasing world demand for protein and oil for feed, fuel and food.

Journal ArticleDOI
TL;DR: High-throughput sequencing and bioinformatics analysis allowed for the construction of a miR-106b- ABCA1 regulatory network map, thus providing a theoretical basis to target this gene in the molecular breeding of dairy cows.
Abstract: Research on the mechanisms that regulate milk fat synthesis in dairy cows is essential to identify potential molecular targets that in the long term can help develop appropriate molecular breeding ...

Journal ArticleDOI
18 Mar 2019-PLOS ONE
TL;DR: This study clearly reflects the usefulness of available sequence data for the development of genome-wide InDels in chickpea that can further contribute and accelerate a wide range of genetic and molecular breeding activities in chickPEa.
Abstract: Chickpea is one of the most important food legumes that holds the key to meet rising global food and nutritional demand. In order to deploy molecular breeding approaches in crop improvement programs, user friendly and cost effective marker resources remain prerequisite. The advent of next generation sequencing (NGS) technology has resulted in the generation of several thousands of markers as part of several large scale genome sequencing and re-sequencing initiatives. Very recently, PCR based Insertion-deletions (InDels) are becoming a popular gel based genotyping solution because of their co-dominant, inexpensive, and highly polymorphic nature. With an objective to expand marker resources for genomics assisted breeding (GAB) in chickpea, whole genome re-sequencing data generated on five parental lines of one interspecific (ICC 4958 × PI 489777) and two intra-specific (ICC 283 × ICC 8261 and ICC 4958 × ICC 1882) mapping populations, were used for identification of InDels. A total of 231,658 InDels were identified using Dindel software with default parameters. Further, a total of 8,307 InDels with ≥20 bp size were selected for development of gel based markers, of which primers could be designed for 7,523 (90.56%) markers. On average, markers appeared at a frequency of 1,038 InDels/LG with a maximum number of markers on CaLG04 (1,952 InDels) and minimum on CaLG08 (360 InDels). In order to validate these InDels, a total of 423 primer pairs were randomly selected and tested on the selected parental lines. A high amplification rate of 80% was observed ranging from 46.06 to 58.01% polymorphism rate across parents on 3% agarose gel. This study clearly reflects the usefulness of available sequence data for the development of genome-wide InDels in chickpea that can further contribute and accelerate a wide range of genetic and molecular breeding activities in chickpea.

Journal ArticleDOI
TL;DR: The results improved the knowledge on the selection of favorable and unfavorable alleles through unconscious selection breeding and identified the opportunities to deploy alleles with effects in wheat breeding.
Abstract: Modern breeding imposed selection for improved productivity that largely influenced the frequency of superior alleles underpinning traits of breeding interest. Therefore, molecular diagnosis for the allelic variations of such genes is important to manipulate beneficial alleles in wheat molecular breeding. We analyzed a diversity panel largely consisted of advanced lines derived from synthetic hexaploid wheats for allelic variation at 87 functional genes or loci of breeding importance using 124 high-throughput KASP markers. We also developed two KASP markers for water-soluble carbohydrate genes (TaSST-D1 and TaSST-A1) associated with plant height and thousand grain weight (TGW) in the diversity panel. KASP genotyping results indicated that beneficial alleles for genes underpinning flowering time (Ppd-D1 and Vrn-D3), thousand grain weight (TaCKX-D1, TaTGW6-A1, TaSus1-7B, and TaCwi-D1), water-soluble carbohydrates (TaSST-A1), yellow-pigment content (Psy-B1 and Zds-D1), and root lesion nematodes (Rlnn1) were fixed in diversity panel with frequency ranged from 96.4 to 100%. The association analysis of functional genes with agronomic and biochemical traits under well-watered (WW) and water-limited (WL) conditions revealed that 21 marker-trait associations (MTAs) were consistently detected in both moisture conditions. The major developmental genes such as Vrn-A1, Rht-D1, and Ppd-B1 had the confounding effect on several agronomic traits including plant height, grain size and weight, and grain yield in both WW and WL conditions. The accumulation of favorable alleles for grain size and weight genes additively enhanced grain weight in the diversity panel. Graphical genotyping approach was used to identify accessions with maximum number of favorable alleles, thus likely to have high breeding value. These results improved our knowledge on the selection of favorable and unfavorable alleles through unconscious selection breeding and identified the opportunities to deploy alleles with effects in wheat breeding.

Journal ArticleDOI
TL;DR: Both the anaerobic germination-tolerant recombinant inbred lines and the loci identified in this study will provide new genetic resources for improving theAnaerobic Germination tolerance of rice using molecular breeding strategies, as well as broaden the understanding of the genetic control of germination tolerance under anaerilic conditions.
Abstract: Anaerobic germination tolerance is an important trait for direct-seeded rice varieties. Understanding the genetic basis of anaerobic germination is a key for breeding direct-seeded rice varieties. In this study, a recombinant inbred line (RIL) population derived from a cross between YZX and 02428 exhibited obvious coleoptile phenotypic differences. Mapping analysis using a high-density bin map indicated that a total of 25 loci were detected across two cropping seasons, including 10 previously detected loci and a total of 13 stable loci. Analysis of the 13 stable loci demonstrated that the more elite alleles that were pyramided in an individual, the higher the values of these traits were in the two cropping seasons. Furthermore, some anaerobic germination-tolerant recombinant inbred lines, namely G9, G10, G16, and G151, were identified. A total of 84 differentially expressed genes were obtained from the 13 stable loci via genome-wide expression analysis of the two parents at three key periods. Among them, Os06g0110200, Os07g0638300, Os07g0638400, Os09g0532900, Os09g0531701 and Os12g0539751 constitute the best candidates associated with anaerobic germination. Both the anaerobic germination-tolerant recombinant inbred lines and the loci identified in this study will provide new genetic resources for improving the anaerobic germination tolerance of rice using molecular breeding strategies, as well as will broaden our understanding of the genetic control of germination tolerance under anaerobic conditions.

Journal ArticleDOI
TL;DR: A new resource for the common bean community, a SNP genotyping platform, a large SNP data set and a number of applications on how to utilize this information to improve the efficiency and quality of seed handling activities, breeding, and seed dissemination through molecular tools are presented.
Abstract: Common bean (Phaseolus vulgaris L.) is an important staple crop for smallholder farmers, particularly in Eastern and Southern Africa. To support common bean breeding and seed dissemination, a high throughput SNP genotyping platform with 1500 established SNP assays has been developed at a genotyping service provider which allows breeders without their own genotyping infrastructure to outsource such service. A set of 708 genotypes mainly composed of germplasm from African breeders and CIAT breeding program were assembled and genotyped with over 800 SNPs. Diversity analysis revealed that both Mesoamerican and Andean gene pools are in use, with an emphasis on large seeded Andean genotypes, which represents the known regional preferences. The analysis of genetic similarities among germplasm entries revealed duplicated lines with different names as well as distinct SNP patterns in identically named samples. Overall, a worrying number of inconsistencies was identified in this data set of very diverse origins. This exemplifies the necessity to develop and use a cost-effective fingerprinting platform to ensure germplasm purity for research, sharing and seed dissemination. The genetic data also allows to visualize introgressions, to identify heterozygous regions to evaluate hybridization success and to employ marker-assisted selection. This study presents a new resource for the common bean community, a SNP genotyping platform, a large SNP data set and a number of applications on how to utilize this information to improve the efficiency and quality of seed handling activities, breeding, and seed dissemination through molecular tools.

Book ChapterDOI
01 Jan 2019
TL;DR: Various conventional and molecular approaches to breeding, improving, and integrating multiple traits into a single genetic background with relevance to lentil crops are discussed.
Abstract: Plant breeders are often interested in improving several quantitative traits including yield, quality, and resistance to both biotic and abiotic stresses simultaneously. However, breeding for multiple traits together is challenging and largely depends on the choice of germplasm, and the genetics and genetic relationships among the traits under selection. Both conventional and molecular breeding approaches have been used to breed for multiple traits simultaneously. Several selection schemes including independent culling levels, tandem selection, and index selection have been developed and used to improve and integrate traits simultaneously. Of these, selection index was preferred in the past and has been used to improve the overall genotypic performance based simultaneously on several quantitative traits, even for traits with unfavorable associations. With the recent development and advancement in molecular marker technologies, molecular breeding has become preferred for targeted breeding and product development. Molecular breeding technologies including marker-assisted selection, marker-assisted backcrossing, marker-assisted recurrent selection, gene pyramiding, marker-assisted backcross gene pyramiding, and genomic selection have been used to introgress single or multiple genes. Multiple trait selection using selection indices based on information from both phenotypes and markers distributed across the whole genome has recently been practiced in various crops. Multiple trait selection is a realistic approach that can be exploited in lentil breeding programs to simultaneously improve multiple traits. In this chapter, we discuss various conventional and molecular approaches to breeding, improving, and integrating multiple traits into a single genetic background with relevance to lentil crops.

Journal ArticleDOI
TL;DR: Genomic selection is a useful approach for prescreening candidate lines, and the empirical evidence provided by the current study for TRMs and nonadditive effects can inform plant breeding and in turn contribute to the improvement of selection efficiency in practical GS-assisted breeding programs.
Abstract: Genomic selection (GS), a tool developed for molecular breeding, is used by plant breeders to improve breeding efficacy by shortening the breeding cycle and to facilitate the selection of candidate lines for creating hybrids without phenotyping in various environments. Association and linkage mapping have been widely used to explore and detect candidate genes in order to understand the genetic mechanisms of quantitative traits. In the current study, phenotypic and genotypic data from three experimental populations, including data on six agronomic traits (e.g., plant height, ear height, ear length, ear diameter, grain yield per plant, and hundred-kernel weight), were used to evaluate the effect of trait-relevant markers (TRMs) on prediction accuracy estimation. Integrating information from mapping into a statistical model can efficiently improve prediction performance compared with using stochastically selected markers to perform GS. The prediction accuracy can reach plateau when a total of 500-1,000 TRMs are utilized in GS. The prediction accuracy can be significantly enhanced by including nonadditive effects and TRMs in the GS model when genotypic data with high proportions of heterozygous alleles and complex agronomic traits with high proportion of nonadditive variancein phenotypic variance are used to perform GS. In addition, taking information on population structure into account can slightly improve prediction performance when the genetic relationship between the training and testing sets is influenced by population stratification due to different allele frequencies. In conclusion, GS is a useful approach for prescreening candidate lines, and the empirical evidence provided by the current study for TRMs and nonadditive effects can inform plant breeding and in turn contribute to the improvement of selection efficiency in practical GS-assisted breeding programs.

Journal ArticleDOI
TL;DR: Gene flow analysis showed that introduced cultivars especially from the former USSR and Italy contributed to enriched genetic variation in modern Chinese cultivars and introduced accessions.
Abstract: Wheat breeding over the last 100 years has increased productivity by adapting genotypes to local conditions, but the genomic changes and selection signals that caused phenotypic change during breeding are essentially unknown. Studying and understanding human selection of multiple important genes controlling key phenotypic traits will promote wheat molecular breeding. A total of 1152 diverse global wheat materials were genotyped based on KASP markers from 47 genes controlling grain yield, grain quality, adaptation, and stress resistance. Significant phenotypic variations between landraces and modern cultivars were found in 11 adaptive and yield-related traits. Thirty-six improvement-selective favorable alleles, including 22 positive prolonged and 14 negative selection alleles, were identified through comparing frequency spectra. Sus1-7A-Hap-H, Sus1-7B-Hap-T, Sus2-2A-Hap-A, TGW6-A1a, Cwi-4A-Hap-C, vrn-A1, PHS1-PHS+ and Lr34+ were subjected to strong selection, and overwhelmingly strong selection had occurred before improvement selection at Psy-A1b, Psy-B1a or b, Psy-D1a and Cwi-5D-Hap-C. However, Rht-B1b, Rht-D1b and 1BL.1RS were rare or absent in Chinese landraces but present in modern Chinese cultivars and introduced accessions. Importantly, Lr68+, Fhb1+, Wx-B1b and Yr15+, currently existing at a low frequency, should be regarded as further major improvement targets in global wheat breeding. Gene flow analysis showed that introduced cultivars especially from the former USSR and Italy contributed to enriched genetic variation in modern Chinese cultivars. This work objectively reports human selection on favorable alleles of multiple crucial genes in Asia, Europe, North America and CIMMYT, and traces the distribution of important genes in global wheat for molecular breeding.

Book ChapterDOI
01 Jan 2019
TL;DR: The background and development of conventional walnut breeding programs in the leading walnut producing countries of the USA, France, China, Iran and Turkey are described, and the current use and status of molecular breeding and biotechnology in walnuts breeding are focused on.
Abstract: Walnut (Juglans regia L.) is one of the oldest trees with harvestable products known to humans and has a history dating to 7000 BC in Persia. Walnut breeding programs aim to release productive scion cultivars with disease resistance and high-quality nuts, along with rootstocks resistant to biotic and abiotic stresses. Genetic improvement of walnut began with the selection of superior trees in their main centers of origin, primarily from the Persian plateau. The first selection and grafting of superior walnut genotypes began in France. The first organized walnut-breeding program employing targeted hybridization began in the USA in 1948, primarily using introduced French cultivars and selected local genotypes derived from seed imported from centers of origin (Iran, Afghanistan, China). Currently, both conventional hybridization with phenotypic evaluation and molecular breeding approaches are used in the USA programs as well as those in France, China, Iran, Spain and Italy. Recent advances in biotechnology and genomics show potential to accelerate cultivar development. In addition, the exploration, description, and preservation of biodiverse germplasm can provide a gene bank of desirable traits and enable biotechnologists to conduct breeding more accurately and rapidly in the future. Recent advancements have opened up new avenues to enhance the efficiency of walnut breeding to release new scions and rootstocks. These include next-generation sequencing (NGS) techniques, bioinformatics tools, high-throughput genotyping platforms and genomics-based approaches such as genome wide association studies (GWAS), marker-assisted selection (MAS), genomic selection (GS) and genome editing with the CRISPR-Cas9 system. In this chapter, we describe the background and development of conventional walnut breeding programs in the leading walnut producing countries of the USA, France, China, Iran and Turkey, and finally focus on the current use and status of molecular breeding and biotechnology in walnut breeding.

Journal ArticleDOI
TL;DR: Some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens are summarized while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs.
Abstract: The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.

Journal ArticleDOI
TL;DR: The maize improvement program within International Institute of Tropical Agriculture (IITA) is undergoing a process of modernization through the introduction of innovative tools and new schemes that are expected to enhance genetic gains and impact on smallholder farmers in the region.
Abstract: Maize production in West and Central Africa (WCA) is constrained by a wide range of interacting stresses that keep productivity below potential yields. Among the many problems afflicting maize production in WCA, drought, foliar diseases, and parasitic weeds are the most critical. Several decades of efforts devoted to the genetic improvement of maize have resulted in remarkable genetic gain, leading to increased yields of maize on farmers' fields. The revolution unfolding in the areas of genomics, bioinformatics, and phenomics is generating innovative tools, resources, and technologies for transforming crop breeding programs. It is envisaged that such tools will be integrated within maize breeding programs, thereby advancing these programs and addressing current and future challenges. Accordingly, the maize improvement program within International Institute of Tropical Agriculture (IITA) is undergoing a process of modernization through the introduction of innovative tools and new schemes that are expected to enhance genetic gains and impact on smallholder farmers in the region. Genomic tools enable genetic dissections of complex traits and promote an understanding of the physiological basis of key agronomic and nutritional quality traits. Marker-aided selection and genome-wide selection schemes are being implemented to accelerate genetic gain relating to yield, resilience, and nutritional quality. Therefore, strategies that effectively combine genotypic information with data from field phenotyping and laboratory-based analysis are currently being optimized. Molecular breeding, guided by methodically defined product profiles tailored to different agroecological zones and conditions of climate change, supported by state-of-the-art decision-making tools, is pivotal for the advancement of modern, genomics-aided maize improvement programs. Accelerated genetic gain, in turn, catalyzes a faster variety replacement rate. It is critical to forge and strengthen partnerships for enhancing the impacts of breeding products on farmers' livelihood. IITA has well-established channels for delivering its research products/technologies to partner organizations for further testing, multiplication, and dissemination across various countries within the subregion. Capacity building of national agricultural research system (NARS) will facilitate the smooth transfer of technologies and best practices from IITA and its partners.

Journal ArticleDOI
TL;DR: Advances in fine mapping and expression studies integrated with cheaper prices offer new avenues for the plant breeders engaged in climate-resilient plant breeding, and thereby, hope persists to ensure food security in the era of climate change.
Abstract: The ever-rising population of the twenty-first century together with the prevailing challenges, such as deteriorating quality of arable land and water, has placed a big challenge for plant breeders to satisfy human needs for food under erratic weather patterns. Rice, wheat, and maize are the major staple crops consumed globally. Drought, waterlogging, heat, salinity, and mineral toxicity are the key abiotic stresses drastically affecting crop yield. Conventional plant breeding approaches towards abiotic stress tolerance have gained success to limited extent, due to the complex (multigenic) nature of these stresses. Progress in breeding climate-resilient crop plants has gained momentum in the last decade, due to improved understanding of the physiochemical and molecular basis of various stresses. A good number of genes have been characterized for adaptation to various stresses. In the era of novel molecular markers, mapping of QTLs has emerged as viable solution for breeding crops tolerant to abiotic stresses. Therefore, molecular breeding-based development and deployment of high-yielding climate-resilient crop cultivars together with climate-smart agricultural practices can pave the path to enhanced crop yields for smallholder farmers in areas vulnerable to the climate change. Advances in fine mapping and expression studies integrated with cheaper prices offer new avenues for the plant breeders engaged in climate-resilient plant breeding, and thereby, hope persists to ensure food security in the era of climate change.

Journal ArticleDOI
TL;DR: The improvement of sequencing throughput and the development of efficient library preparation methods has made it feasible to carry out targeted genotyping-by-sequencing experiments cost-competitively with either random complexity reduction systems or traditional array-based platforms, while maintaining the key advantages of both technologies.

Journal ArticleDOI
30 Jan 2019-Gene
TL;DR: In this study, it was presented both the necessary foundations of miRNAs and their important uses in plant sciences, such as molecular markers and metabolic engineering, in order to expand the use of artificial miRNA in plants engineering.

Journal ArticleDOI
TL;DR: The resequenced Upland cotton genomes and variation map of an intact breeding pedigree comprising seven elite and 19 backbone parents are constructed and reveal insights that will facilitate yield increases in the molecular breeding of cotton.
Abstract: Upland cotton (Gossypium hirsutum) is the world's largest source of natural fibre and dominates the global textile industry Hybrid cotton varieties exhibit strong heterosis that confers high fibre yields, yet the genome-wide effects of artificial selection that have influenced Upland cotton during its breeding history are poorly understood Here, we resequenced Upland cotton genomes and constructed a variation map of an intact breeding pedigree comprising seven elite and 19 backbone parents Compared to wild accessions, the 26 pedigree accessions underwent strong artificial selection during domestication that has resulted in reduced genetic diversity but stronger linkage disequilibrium and higher extents of selective sweeps In contrast to the backbone parents, the elite parents have acquired significantly improved agronomic traits, with an especially pronounced increase in the lint percentage Notably, identify by descent (IBD) tracking revealed that the elite parents inherited abundant beneficial trait segments and loci from the backbone parents and our combined analyses led to the identification of a core genomic segment which was inherited in the elite lines from the parents Zhong 7263 and Ejing 1 and that was strongly associated with lint percentage Additionally, SNP correlation analysis of this core segment showed that a non-synonymous SNP (A-to-G) site in a gene encoding the cell wall-associated receptor-like kinase 3 (GhWAKL3) protein was highly correlated with increased lint percentage Our results substantially increase the valuable genomics resources available for future genetic and functional genomics studies of cotton and reveal insights that will facilitate yield increases in the molecular breeding of cotton

Journal ArticleDOI
TL;DR: This study used a panel of 243 cultivars and advanced breeding lines developed during the last 20 years to identify SNPs associated with 24 traits related to nutritional value and quality, and identified several candidate markers to assist durum wheat quality improvement through molecular breeding.
Abstract: Durum wheat [Triticum durum (Desf)] is mostly used to produce pasta, couscous, and bulgur The quality of the grain and end-use products determine its market value However, quality tests are highly resource intensive and almost impossible to conduct in the early generations in the breeding program Modern genomics-based tools provide an excellent opportunity to genetically dissect complex quality traits to expedite cultivar development using molecular breeding approaches This study used a panel of 243 cultivars and advanced breeding lines developed during the last 20 years to identify SNPs associated with 24 traits related to nutritional value and quality Genome-wide association study (GWAS) identified a total of 179 marker-trait associations (MTAs), located in 95 genomic regions belonging to all 14 durum wheat chromosomes Major and stable QTLs were identified for gluten strength on chromosomes 1A and 1B, and for PPO activity on chromosomes 1A, 2B, 3A, and 3B As a large amount of unbalance phenotypic data are generated every year on advanced lines in all the breeding programs, the applicability of such a dataset for identification of MTAs remains unclear We observed that ∼84% of the MTAs identified using a historic unbalanced dataset (belonging to a total of 80 environments collected over a period of 16 years) were also identified in a balanced dataset This suggests the suitability of historic unbalanced phenotypic data to identify beneficial MTAs to facilitate local-knowledge-based breeding In addition to providing extensive knowledge about the genetics of quality traits, association mapping identified several candidate markers to assist durum wheat quality improvement through molecular breeding The molecular markers associated with important traits could be extremely useful in the development of improved quality durum wheat cultivars using marker-assisted selection (MAS)

Journal ArticleDOI
TL;DR: Improved protocol of QTL-seq, an NGS-based method for bulked segregant analysis the authors previously developed in rice, is improved, extending its applicability for accelerating the genetic analysis and molecular breeding of B. rapa and other plant species of economic importance with heterozygous genomes.
Abstract: An improved protocol of QTL-seq, an NGS-based method for bulked segregant analysis we previously developed in rice, allowed successful mapping of QTLs of interest in the highly heterozygous genome of B. rapa, demonstrating the power of this elegant method for genetic analyses in heterozygous species of economic importance. Recent advances in next-generation sequencing (NGS) and the various NGS-based methods developed for rapidly identifying candidate genes of interest have accelerated genetic analysis mainly in the model plants rice and Arabidopsis. Brassica rapa includes several economically important crops such as Chinese cabbage, turnip and various leafy vegetables. The application of NGS-based approaches for the analysis of B. rapa has been limited mainly due to its highly heterozygous genome and poor quality of the reference genome sequence currently available for this species. In this study, we have improved QTL-seq, a method for NGS-based bulked segregant analysis we previously developed in rice, extending its applicability for accelerating the genetic analysis and molecular breeding of B. rapa. Addition of new filters to the original QTL-seq pipeline allowed removal of spurious single-nucleotide polymorphisms caused by alignment/sequencing errors and variability between parents, significantly improving accuracy of the analysis. As proof of principle, we successfully applied the new approach to identify candidate genomic regions controlling flowering and trichome formation using segregating F2 progeny obtained from crosses made between cultivars of B. rapa showing contrasting phenotypes for these traits. We strongly believe that the improved QTL-seq method reported here will extend the applicability of NGS-based genetic analysis not only to B. rapa but also to other plant species of economic importance with heterozygous genomes.

Book ChapterDOI
01 Jan 2019
TL;DR: The objective of this chapter is to summarize the current status of triticale production worldwide and provide details on different breeding approaches being used to improve triticalse cultivars.
Abstract: Triticale (x Triticosecale Wittmack) is a man-made, self-pollinated cereal crop specie developed by crossing wheat (Triticum spp.) and rye (Secale cereale). The initial goal of creating triticale was to develop a new cereal crop that would combine the superior agro-morphological and end-use quality characteristics of wheat, and the adaptability, vigor and resistance/tolerance to abiotic and biotic stresses of rye. Triticale is well adapted to a wider range of environments where wheat is grown; moreover, under stress conditions, triticale performs better. Triticale has been grown worldwide mainly for grain and forage production, and recently for bioenergy production. Although the grain quality of triticale is unsatisfactory compared to other small grain crops such as wheat, it still possesses a good level of resistance to multiple diseases and pests and many useful genes have been successfully transferred to wheat from triticale. The majority of triticale breeding programs focus on the improvement of economically-important traits such as grain and biomass yield, diseases and pest resistance, quality and agronomic traits. Several studies have demonstrated that genetic diversity within triticale germplasm is low, which is not unexpected. Traditional breeding methods are most commonly used in triticale improvement. Currently, modern breeding approaches, such as marker-assisted selection (MAS), genomic selection, double-haploid (DH) and genetic transformations are being explored to improve triticale. Use of molecular breeding technology and molecular markers are limited in triticale but many molecular markers of wheat and rye are conserved in the triticale genome and therefore wheat and rye genomics can be used in triticale improvement. The objective of this chapter is to summarize the current status of triticale production worldwide and provide details on different breeding approaches being used to improve triticale cultivars.