scispace - formally typeset
Search or ask a question

Showing papers on "Phosphatase published in 2009"


01 Jan 2009
TL;DR: In this paper, the plant hormone abscisic acid (ABA) receptor was identified as a regulatory component of the ABA receptor (RCARs) in Arabidopsis.
Abstract: ABA Receptor Rumbled? The plant hormone abscisic acid (ABA) is critical for normal development and for mediating plant responses to stressful environmental conditions. Now, two papers present analyses of candidate ABA receptors (see the news story by Pennisi). Ma et al. (p. 1064; published online 30 April) and Park et al. (p. 1068, published online 30 April) used independent strategies to search for proteins that physically interact with ABI family phosphatase components of the ABA response signaling pathway. Both groups identified different members of the same family of proteins, which appear to interact with ABI proteins to form a heterocomplex that can act as the ABA receptor. The variety of both families suggests that the ABA receptor may not be one entity, but rather a class of closely related complexes, which may explain previous difficulties in establishing its identity. Links between two ancient multimember protein families signal responses to the plant hormone abscisic acid. The plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs). In Arabidopsis, RCARs belong to a family with 14 members that share structural similarity with class 10 pathogen-related proteins. RCAR1 was shown to bind ABA, to mediate ABA-dependent inactivation of ABI1 or ABI2 in vitro, and to antagonize PP2C action in planta. Other RCARs also mediated ABA-dependent regulation of ABI1 and ABI2, consistent with a combinatorial assembly of receptor complexes.

1,506 citations


Journal ArticleDOI
Yigong Shi1
30 Oct 2009-Cell
TL;DR: Biochemical and structural investigations that advance the mechanistic understanding of the three major classes of PSPs are discussed, with a focus on PP2A.

1,270 citations


Journal ArticleDOI
TL;DR: It is demonstrated that group A PP2Cs act as ‘gatekeepers’ of subclass III SnRK2s, unraveling an important regulatory mechanism of ABA signaling.
Abstract: Abscisic acid (ABA) signaling is important for stress responses and developmental processes in plants. A subgroup of protein phosphatase 2C (group A PP2C) or SNF1-related protein kinase 2 (subclass III SnRK2) have been known as major negative or positive regulators of ABA signaling, respectively. Here, we demonstrate the physical and functional linkage between these two major signaling factors. Group A PP2Cs interacted physically with SnRK2s in various combinations, and efficiently inactivated ABA-activated SnRK2s via dephosphorylation of multiple Ser/Thr residues in the activation loop. This step was suppressed by the RCAR/PYR ABA receptors in response to ABA. However the abi1–1 mutated PP2C did not respond to the receptors and constitutively inactivated SnRK2. Our results demonstrate that group A PP2Cs act as ‘gatekeepers’ of subclass III SnRK2s, unraveling an important regulatory mechanism of ABA signaling.

885 citations


Journal ArticleDOI
TL;DR: It is demonstrated that SLAC1 represents the slow, deactivating, weak voltage-dependent anion channel of guard cells controlled by phosphorylation/dephosphorylation.
Abstract: In response to drought stress the phytohormone ABA (abscisic acid) induces stomatal closure and, therein, activates guard cell anion channels in a calcium-dependent as well as-independent manner. Two key components of the ABA signaling pathway are the protein kinase OST1 (open stomata 1) and the protein phosphatase ABI1 (ABA insensitive 1). The recently identified guard cell anion channel SLAC1 appeared to be the key ion channel in this signaling pathway but remained electrically silent when expressed heterologously. Using split YFP assays, we identified OST1 as an interaction partner of SLAC1 and ABI1. Upon coexpression of SLAC1 with OST1 in Xenopus oocytes, SLAC1-related anion currents appeared similar to those observed in guard cells. Integration of ABI1 into the SLAC1/OST1 complex, however, prevented SLAC1 activation. Our studies demonstrate that SLAC1 represents the slow, deactivating, weak voltage-dependent anion channel of guard cells controlled by phosphorylation/dephosphorylation.

756 citations


Journal ArticleDOI
TL;DR: The results suggest that ABA signaling is mediated by a physical interaction chain consisting of several components, including a PP2C member, SnRK2-type kinase (OST1), and an ion channel, SLAC1, to regulate stomatal movements.
Abstract: The plant hormone abscisic acid (ABA) serves as a physiological monitor to assess the water status of plants and, under drought conditions, induces stomatal pore closure by activating specific ion channels, such as a slow-anion channel (SLAC1) that, in turn, mediate ion efflux from the guard cells. Earlier genetic analyses uncovered a protein kinase (OST1) and several 2C-type phosphatases, as respective positive and negative regulators of ABA-induced stomatal closure. Here we show that the OST1 kinase interacts with the SLAC1 anion channel, leading to its activation via phosphorylation. PP2CA, one of the PP2C phosphatase family members acts in an opposing manner and inhibits the activity of SLAC1 by two mechanisms: (1) direct interaction with SLAC1 itself, and (2) physical interaction with OSTI leading to inhibition of the kinase independently of phosphatase activity. The results suggest that ABA signaling is mediated by a physical interaction chain consisting of several components, including a PP2C member, SnRK2-type kinase (OST1), and an ion channel, SLAC1, to regulate stomatal movements. The findings are in keeping with a paradigm in which a protein kinase-phosphatase pair interacts physically with a target protein to couple a signal with a specific response.

548 citations


Journal ArticleDOI
TL;DR: Actions of ascorbic acid on osteoblast marker gene expression are mediated by increases in collagen synthesis and/or accumulation because (1) parallel dose‐response relationships were obtained for ascor bic acid stimulation of collagen accumulation and alkaline phosphatase activity, and (2) the specific collagen synthesis inhibitors, 3,4‐dehydroproline and cis‐4‐hydroxyproline, reversibly blocked ascorBic acid‐dependent collagen synthesis
Abstract: The MC3T3-E1 mouse calvaria-derived cell line has been used to study the role of collagen synthesis in osteoblast differentiation. MC3T3-E1 cells, like several previously characterized osteoblast culture systems, expressed osteoblast markers and formed a mineralized extracellular matrix only after exposure to ascorbic acid. Mineralization was stimulated further by β-glycerol phosphate. Ultrastructural observations indicated that the extracellular matrix produced by ascorbic acid-treated cells was highly organized and contained well-banded collagen fibrils. Expression of osteoblast markers followed a clear temporal sequence. The earliest effects of ascorbic acid were to stimulate type I procollagen mRNA and collagen synthesis (24 h after ascorbate addition), followed by induction of alkaline phosphatase (48–72 h) and osteocalcin (96–144 h) mRNAs. Procollagen mRNA, which was expressed constitutively in the absence of ascorbate, increased only twofold after vitamin C addition. In contrast, alkaline phosphatase and osteocalcin mRNAs were undetectable in untreated cultures. Actions of ascorbic acid on osteoblast marker gene expression are mediated by increases in collagen synthesis and/or accumulation because (1) parallel dose-response relationships were obtained for ascorbic acid stimulation of collagen accumulation and alkaline phosphatase activity, and (2) the specific collagen synthesis inhibitors, 3,4-dehydroproline and cis-4-hydroxyproline, reversibly blocked ascorbic acid-dependent collagen synthesis and osteoblast marker gene expression.

535 citations


Journal ArticleDOI
TL;DR: In this review, the known effects of specific PP2A holoenzymes and their roles in cancer relevant pathways are summarized andPP2A function in the regulation of MAPK and Wnt signaling is highlighted.

506 citations


Journal ArticleDOI
TL;DR: Evidence that PP2Cs are directly implicated in the ABA-dependent activation of OST1 is provided and the activation mechanism of AMPK/Snf1-related kinases through the inhibition of regulating PP2C is conserved from plants to human.
Abstract: The plant hormone abscisic acid (ABA) orchestrates plant adaptive responses to a variety of stresses, including drought. This signaling pathway is regulated by reversible protein phosphorylation, and genetic evidence demonstrated that several related protein phosphatases 2C (PP2Cs) are negative regulators of this pathway in Arabidopsis thaliana. Here, we developed a protein phosphatase profiling strategy to define the substrate preferences of the HAB1 PP2C implicated in ABA signaling and used these data to screen for putative substrates. Interestingly, this analysis designated the activation loop of the ABA activated kinase OST1, related to Snf1 and AMPK kinases, as a putative HAB1 substrate. We experimentally demonstrated that HAB1 dephosphorylates and deactivates OST1 in vitro. Furthermore, HAB1 and the related PP2Cs ABI1 and ABI2 interact with OST1 in vivo, and mutations in the corresponding genes strongly affect OST1 activation by ABA. Our results provide evidence that PP2Cs are directly implicated in the ABA-dependent activation of OST1 and further suggest that the activation mechanism of AMPK/Snf1-related kinases through the inhibition of regulating PP2Cs is conserved from plants to human.

505 citations


Journal ArticleDOI
TL;DR: In this article, PYL5, PYL6 and PYL8 were identified as a cytosolic and nuclear ABA receptor that activates ABA signaling through direct inhibition of clade A PP2Cs.
Abstract: Summary Abscisic acid (ABA) is a key phytohormone involved in adaption to environmental stress and regulation of plant development. Clade A protein phosphatases type 2C (PP2Cs), such as HAB1, are key negative regulators of ABA signaling in Arabidopsis. To obtain further insight into regulation of HAB1 function by ABA, we have screened for HAB1-interacting partners using a yeast two-hybrid approach. Three proteins were identified, PYL5, PYL6 and PYL8, which belong to a 14-member subfamily of the Bet v1-like superfamily. HAB1–PYL5 interaction was confirmed using BiFC and co-immunoprecipitation assays. PYL5 over-expression led to a globally enhanced response to ABA, in contrast to the opposite phenotype reported for HAB1-over-expressing plants. F2 plants that over-expressed both HAB1 and PYL5 showed an enhanced response to ABA, indicating that PYL5 antagonizes HAB1 function. PYL5 and other members of its protein family inhibited HAB1, ABI1 and ABI2 phosphatase activity in an ABA-dependent manner. Isothermal titration calorimetry revealed saturable binding of (+)ABA to PYL5, with Kd values of 1.1 μm or 38 nm in the absence or presence of the PP2C catalytic core of HAB1, respectively. Our work indicates that PYL5 is a cytosolic and nuclear ABA receptor that activates ABA signaling through direct inhibition of clade A PP2Cs. Moreover, we show that enhanced resistance to drought can be obtained through PYL5-mediated inhibition of clade A PP2Cs.

499 citations


Journal ArticleDOI
TL;DR: In this article, T6P was shown to be an inhibitor of protein kinase 1 (snRK1) in Arabidopsis (Arabidopsis thaliana ) seedling extracts.
Abstract: Trehalose-6-phosphate (T6P) is a proposed signaling molecule in plants, yet how it signals was not clear. Here, we provide evidence that T6P functions as an inhibitor of SNF1-related protein kinase1 (SnRK1; AKIN10/AKIN11) of the SNF1-related group of protein kinases. T6P, but not other sugars and sugar phosphates, inhibited SnRK1 in Arabidopsis ( Arabidopsis thaliana ) seedling extracts strongly (50%) at low concentrations (1–20 μ m). Inhibition was noncompetitive with respect to ATP. In immunoprecipitation studies using antibodies to AKIN10 and AKIN11, SnRK1 catalytic activity and T6P inhibition were physically separable, with T6P inhibition of SnRK1 dependent on an intermediary factor. In subsequent analysis, T6P inhibited SnRK1 in extracts of all tissues analyzed except those of mature leaves, which did not contain the intermediary factor. To assess the impact of T6P inhibition of SnRK1 in vivo, gene expression was determined in seedlings expressing Escherichia coli otsA encoding T6P synthase to elevate T6P or otsB encoding T6P phosphatase to decrease T6P. SnRK1 target genes showed opposite regulation, consistent with the regulation of SnRK1 by T6P in vivo. Analysis of microarray data showed up-regulation by T6P of genes involved in biosynthetic reactions, such as genes for amino acid, protein, and nucleotide synthesis, the tricarboxylic acid cycle, and mitochondrial electron transport, which are normally down-regulated by SnRK1. In contrast, genes involved in photosynthesis and degradation processes, which are normally up-regulated by SnRK1, were down-regulated by T6P. These experiments provide strong evidence that T6P inhibits SnRK1 to activate biosynthetic processes in growing tissues.

441 citations


01 Jan 2009
TL;DR: Analysis of microarray data showed up-regulation by T6P of genes involved in biosynthetic reactions, such as genes for amino acid, protein, and nucleotide synthesis, the tricarboxylic acid cycle, and mitochondrial electron transport, which are normally down-regulated by SnRK1.
Abstract: Trehalose-6-phosphate (T6P) is a proposed signaling molecule in plants, yet how it signals was not clear. Here, we provide evidence that T6P functions as an inhibitor of SNF1-related protein kinase1 (SnRK1; AKIN10/AKIN11) of the SNF1-related group of protein kinases. T6P, but not other sugars and sugar phosphates, inhibited SnRK1 in Arabidopsis (Arabidopsis thaliana) seedling extracts strongly (50%) at low concentrations (1–20 mM). Inhibition was noncompetitive with respect to ATP. In immunoprecipitation studies using antibodies to AKIN10 and AKIN11, SnRK1 catalytic activity and T6P inhibition were physically separable, with T6P inhibition of SnRK1 dependent on an intermediary factor. In subsequent analysis, T6P inhibited SnRK1 in extracts of all tissues analyzed except those of mature leaves, which did not contain the intermediary factor. To assess the impact of T6P inhibition of SnRK1 in vivo, gene expression was determined in seedlings expressing Escherichia coli otsA encoding T6P synthase to elevate T6P or otsB encoding T6P phosphatase to decrease T6P. SnRK1 target genes showed opposite regulation, consistent with the regulation of SnRK1 by T6P in vivo. Analysis of microarray data showed up-regulation by T6P of genes involved in biosynthetic reactions, such as genes for amino acid, protein, and nucleotide synthesis, the tricarboxylic acid cycle, and mitochondrial electron transport, which are normally down-regulated by SnRK1. In contrast, genes involved in photosynthesis and degradation processes, which are normally up-regulated by SnRK1, were down-regulated by T6P. These experiments provide strong evidence that T6P inhibits SnRK1 to activate biosynthetic processes in growing tissues. Suc and trehalose are widespread nonreducing disaccharides that function as translocated carbon sources and stress protection compounds. Plants and cyanobacteria are the only organisms in which the pathways of trehalose and Suc synthesis coexist. In the majority of plants, trehalose occurs in trace amounts only, prohibiting a function as a carbon source. This raises the question of the role of the trehalose pathway in plants, given the large number and ubiquity of


Journal ArticleDOI
TL;DR: A mechanism for quorum sensing control ofBiofilm formation through the pel locus is provided and PA3885 should be named TpbA for tyrosine phosphatase related to biofilm formation and PA1120 should be TpbB, which leads to reduced c-di-GMP production.
Abstract: With the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing based on homoserine lactones was found to influence biofilm formation. Here we discern a mechanism by which quorum sensing controls biofilm formation by screening 5850 transposon mutants of P. aeruginosa PA14 for altered biofilm formation. This screen identified the PA3885 mutant, which had 147-fold more biofilm than the wild-type strain. Loss of PA3885 decreased swimming, abolished swarming, and increased attachment, although this did not affect production of rhamnolipids. The PA3885 mutant also had a wrinkly colony phenotype, formed pronounced pellicles, had substantially more aggregation, and had 28-fold more exopolysaccharide production. Expression of PA3885 in trans reduced biofilm formation and abolished aggregation. Whole transcriptome analysis showed that loss of PA3885 activated expression of the pel locus, an operon that encodes for the synthesis of extracellular matrix polysaccharide. Genetic screening identified that loss of PelABDEG and the PA1120 protein (which contains a GGDEF-motif) suppressed the phenotypes of the PA3885 mutant, suggesting that the function of the PA3885 protein is to regulate 3,5-cyclic diguanylic acid (c-di-GMP) concentrations as a phosphatase since c-di-GMP enhances biofilm formation by activating PelD, and c-di-GMP inhibits swarming. Loss of PA3885 protein increased cellular c-di-GMP concentrations; hence, PA3885 protein is a negative regulator of c-di-GMP production. Purified PA3885 protein has phosphatase activity against phosphotyrosine peptides and is translocated to the periplasm. Las-mediated quorum sensing positively regulates expression of the PA3885 gene. These results show that the PA3885 protein responds to AHL signals and likely dephosphorylates PA1120, which leads to reduced c-di-GMP production. This inhibits matrix exopolysaccharide formation, which leads to reduced biofilm formation; hence, we provide a mechanism for quorum sensing control of biofilm formation through the pel locus and suggest PA3885 should be named TpbA for tyrosine phosphatase related to biofilm formation and PA1120 should be TpbB.

Journal ArticleDOI
TL;DR: The investigation provides direct evidence for a model in which PTEN switches between open and closed states and phosphorylation favors the closed conformation, thereby regulating localization and function, and small molecules targeting these interactions could potentially serve as therapeutic agents in antagonizing Ras or PI3K-driven tumors.
Abstract: The PI 3-phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10), one of the most important tumor suppressors, must associate with the plasma membrane to maintain appropriate steady-state levels of phosphatidylinositol 3,4,5-triphosphate. Yet the mechanism of membrane binding has received little attention and the key determinants that regulate localization, a phosphatidylinositol 4,5-bisphosphate (PIP2) binding motif and a cluster of phosphorylated C-terminal residues, were not included in the crystal structure. We report that membrane binding requires PIP2 and show that phosphorylation regulates an intramolecular interaction. A truncated version of the enzyme, PTEN1–351, bound strongly to the membrane, an effect that was reversed by co-expression of the remainder of the molecule, PTEN352–403. The separate fragments associated in vitro, an interaction dependent on phosphorylation of the C-terminal cluster, a portion of the PIP2 binding motif, integrity of the phosphatase domain, and the CBR3 loop. Our investigation provides direct evidence for a model in which PTEN switches between open and closed states and phosphorylation favors the closed conformation, thereby regulating localization and function. Small molecules targeting these interactions could potentially serve as therapeutic agents in antagonizing Ras or PI3K-driven tumors. The study also stresses the importance of determining the structure of the native enzyme.

Journal ArticleDOI
TL;DR: The evolution of the PTPs, the serine/threonine specific PPP (phosphoprotein phosphatase) and PPM (metallo-dependent protein phosphat enzyme) families and the more recently discovered phosphatases that utilize an aspartate-based catalytic mechanism are discussed.
Abstract: Protein phosphorylation appears to be a universal mechanism of protein regulation. Genomics has provided the means to compile inventories of protein phosphatases across a wide selection of organisms and this has supplied insights into the evolution of this group of enzymes. Protein phosphatases evolved independently several times yielding the groups we observe today. Starting from a core catalytic domain, phosphatases evolved by a series of gene duplication events and by adopting the use of regulatory subunits and/or fusion with novel functional modules or domains. Recent analyses also suggest that the serine/threonine specific enzymes are more ancient than the PTPs (protein tyrosine phosphatases). It is likely that the latter played a key role at the onset of metazoan evolution in conjunction with the tremendous expansion of tyrosine kinases and PTPs at this point. In the present review, we discuss the evolution of the PTPs, the serine/threonine specific PPP (phosphoprotein phosphatase) and PPM (metallo-dependent protein phosphatase) families and the more recently discovered phosphatases that utilize an aspartate-based catalytic mechanism. We will also highlight examples of convergent evolution and several phosphatases which are unique to plants.

Journal ArticleDOI
TL;DR: The 5-ptases are a significant family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides.
Abstract: Phosphoinositides are membrane-bound signalling molecules that regulate cell proliferation and survival, cytoskeletal reorganization and vesicular trafficking by recruiting effector proteins to cellular membranes Growth factor or insulin stimulation induces a canonical cascade resulting in the transient phosphorylation of PtdIns(4,5)P2 by PI3K (phosphoinositide 3-kinase) to form PtdIns(3,4,5)P3, which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) back to PtdIns(4,5)P2, or by the 5-ptases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P2 The 5-ptases also hydrolyse PtdIns(4,5)P2, forming PtdIns4P Ten mammalian 5-ptases have been identified, which share a catalytic mechanism similar to that of the apurinic/apyrimidinic endonucleases Gene-targeted deletion of 5-ptases in mice has revealed that these enzymes regulate haemopoietic cell proliferation, synaptic vesicle recycling, insulin signalling, endocytosis, vesicular trafficking and actin polymerization Several studies have revealed that the molecular basis of Lowe's syndrome is due to mutations in the 5-ptase OCRL (oculocerebrorenal syndrome of Lowe) Futhermore, the 5-ptases SHIP [SH2 (Src homology 2)-domain-containing inositol phosphatase] 2, SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) and 72-5ptase (72 kDa 5-ptase)/Type IV/Inpp5e (inositol polyphosphate 5-phosphatase E) are implicated in negatively regulating insulin signalling and glucose homoeostasis in specific tissues SHIP2 polymorphisms are associated with a predisposition to insulin resistance Gene profiling studies have identified changes in the expression of various 5-ptases in specific cancers In addition, 5-ptases such as SHIP1, SHIP2 and 72-5ptase/Type IV/Inpp5e regulate macrophage phagocytosis, and SHIP1 also controls haemopoietic cell proliferation Therefore the 5-ptases are a significant family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides Emerging studies have implicated their loss or gain of function in human disease

Journal ArticleDOI
TL;DR: The regulatory mechanism of Hsp90α secretion, and its function in tumor invasiveness, are revealed, indicating it can be a promising diagnostic marker for tumor malignancy in clinical application.
Abstract: Heat shock protein 90-α (Hsp90α) is an intracellular molecular chaperone. However, it can also be secreted with the underlying regulatory mechanism remaining far from clear. Here we show that the secreted Hsp90α is a C-terminal truncated form and its secretion is regulated by the C-terminal EEVD motif via interacting with proteins containing tetratricopeptide repeat domains. We also demonstrate that secretion of Hsp90α is determined by the phosphorylation status at residue Thr-90, regulated by protein kinase A and protein phosphatase 5. We further demonstrate that the secretion of Hsp90α is a prerequisite for its proinvasiveness function and blocking the secreted Hsp90α results in significant inhibition of tumor metastasis. Meanwhile, the level of plasma Hsp90α is positively correlated with tumor malignancy in clinical cancer patients. In sum, our results reveal the regulatory mechanism of Hsp90α secretion, and its function in tumor invasiveness, indicating it can be a promising diagnostic marker for tumor malignancy in clinical application.

Journal ArticleDOI
TL;DR: The regulation of PAP activity may govern the pathways by which phospholipids are synthesized and control the cellular contents of important signaling lipids in lipid synthesis and signaling in yeast.

Journal ArticleDOI
TL;DR: The data present a mechanism of cleavage-dependent activation of macrophage PTPs by an obligate intracellular pathogen and show that internalization of GP63, a key Leishmania virulence factor, into host macrophages is a strategy the parasite uses to interact and survive within its host.
Abstract: With more than 12 million people affected worldwide, 2 million new cases occurring per year, and the rapid emergence of drug resistance and treatment failure, leishmaniasis is an infectious disease for which research on drug and vaccine development, host-pathogen, and vector-parasite interactions are current international priorities. Upon Leishmania-macrophage interaction, activation of the protein tyrosine phosphatase (PTP) SHP-1 rapidly leads to the down-regulation of Janus kinase and mitogen-activated protein kinase signaling, resulting in the attenuation of host innate inflammatory responses and of various microbicidal macrophage functions. We report that, in addition to SHP-1, the PTPs PTP1B and TCPTP are activated and posttranslationally modified in infected macrophages, and we identify an essential role for PTP1B in the in vivo progression of Leishmania infection. The mechanism underlying PTP modulation involves the proteolytic activity of the Leishmania surface protease GP63. Access of GP63 to macrophage PTP1B, TCPTP, and SHP-1 is mediated in part by a lipid raft-dependent mechanism, resulting in PTP cleavage and stimulation of phosphatase activity. Collectively, our data present a mechanism of cleavage-dependent activation of macrophage PTPs by an obligate intracellular pathogen and show that internalization of GP63, a key Leishmania virulence factor, into host macrophages is a strategy the parasite uses to interact and survive within its host.

Journal ArticleDOI
TL;DR: The hypothesis that M phase requires not only high levels of MPF function, but also the suppression, through a Gwl-dependent mechanism, of phosphatase(s) that would otherwise remove MPF-driven phosphorylations is supported.
Abstract: We have previously shown that Greatwall kinase (Gwl) is required for M phase entry and maintenance in Xenopus egg extracts. Here, we demonstrate that Gwl plays a crucial role in a novel biochemical pathway that inactivates, specifically during M phase, "antimitotic" phosphatases directed against phosphorylations catalyzed by cyclin-dependent kinases (CDKs). A major component of this phosphatase activity is heterotrimeric PP2A containing the B55delta regulatory subunit. Gwl is activated during M phase by Cdk1/cyclin B (MPF), but once activated, Gwl promotes PP2A/B55delta inhibition with no further requirement for MPF. In the absence of Gwl, PP2A/B55delta remains active even when MPF levels are high. The removal of PP2A/B55delta corrects the inability of Gwl-depleted extracts to enter M phase. These findings support the hypothesis that M phase requires not only high levels of MPF function, but also the suppression, through a Gwl-dependent mechanism, of phosphatase(s) that would otherwise remove MPF-driven phosphorylations.

Journal ArticleDOI
TL;DR: PP2Cm-deficient mice exhibited BCAA catabolic defects and a metabolic phenotype similar to the intermittent or intermediate types of human maple syrup urine disease (MSUD), a hereditary disorder caused by defects in BCKD activity that is suggested to be responsible for a subset of human MSUD.
Abstract: The branched-chain amino acids (BCAA) are essential amino acids required for protein homeostasis, energy balance, and nutrient signaling. In individuals with deficiencies in BCAA, these amino acids can be preserved through inhibition of the branched-chain-α-ketoacid dehydrogenase (BCKD) complex, the rate-limiting step in their metabolism. BCKD is inhibited by phosphorylation of its E1α subunit at Ser293, which is catalyzed by BCKD kinase. During BCAA excess, phosphorylated Ser293 (pSer293) becomes dephosphorylated through the concerted inhibition of BCKD kinase and the activity of an unknown intramitochondrial phosphatase. Using unbiased, proteomic approaches, we have found that a mitochondrial-targeted phosphatase, PP2Cm, specifically binds the BCKD complex and induces dephosphorylation of Ser293 in the presence of BCKD substrates. Loss of PP2Cm completely abolished substrate-induced E1α dephosphorylation both in vitro and in vivo. PP2Cm-deficient mice exhibited BCAA catabolic defects and a metabolic phenotype similar to the intermittent or intermediate types of human maple syrup urine disease (MSUD), a hereditary disorder caused by defects in BCKD activity. These results indicate that PP2Cm is the endogenous BCKD phosphatase required for nutrient-mediated regulation of BCKD activity and suggest that defects in PP2Cm may be responsible for a subset of human MSUD.

Journal ArticleDOI
TL;DR: Genetic and structural studies that identify conserved docking surfaces in protein phosphatase type 1 (PP1) and the Ca2+-calmodulin–regulated phosphat enzyme calcineurin are discussed, and studies reveal that docking interactions are key for the recognition of substrates and regulators by two conserved phosphatases.
Abstract: Many biological processes are regulated through alterations in the phosphorylation state of their protein components. Identifying the protein kinases and phosphatases that add and remove phosphate groups to these proteins is critical to understand cellular regulation. Most phosphoserine- and phosphothreonine-specific dephosphorylation is performed by a handful of protein phosphatases, each of which dephosphorylates sites that share little similarity in amino acid sequence. How do these enzymes recognize such diverse substrates with specificity? Studies show that several regions of the phosphatase that are not involved in catalysis are required for its recognition of protein partners. These regions, or docking surfaces, are conserved, and each binds weakly to a small, degenerate sequence motif (that is, a docking site) in a substrate or regulator of a phosphatase. Several of these weak interactions combine to achieve overall binding specificity. This Review, which contains 3 figures and 67 references, discusses genetic and structural studies that identify conserved docking surfaces in protein phosphatase type 1 (PP1) and the Ca 2+ -calmodulin–regulated phosphatase calcineurin, and show that some phosphatase inhibitors—for example, the immunosuppressants FK506 and cyclosporin A—act by interfering with substrate docking rather than with catalytic activity.

Journal ArticleDOI
TL;DR: It is shown that WIP1 is a direct phosphatase of Ser 536 of the p65 subunit of NF-κB, which is known to be essential for the transactivation function of p65, as it is required for recruitment of the transcriptional co-activator p300.
Abstract: Post-translational modifications of NF-kappaB through phosphorylations enhance its transactivation potential. Much is known about the kinases that phosphorylate NF-kappaB, but little is known about the phosphatases that dephosphorylate it. By using a genome-scale siRNA screen, we identified the WIP1 phosphatase as a negative regulator of NF-kappaB signalling. WIP1-mediated regulation of NF-kappaB occurs in both a p38-dependent and independent manner. Overexpression of WIP1 resulted in decreased NF-kappaB activation in a dose-dependent manner, whereas WIP1 knockdown resulted in increased NF-kappaB function. We show that WIP1 is a direct phosphatase of Ser 536 of the p65 subunit of NF-kappaB. Phosphorylation of Ser 536 is known to be essential for the transactivation function of p65, as it is required for recruitment of the transcriptional co-activator p300. WIP1-mediated regulation of p65 regulated binding of NF-kappaB to p300 and hence chromatin remodelling. Consistent with our results, mice lacking WIP1 showed enhanced inflammation. These results provide the first genetic proof that a phosphatase directly regulates NF-kappaB signalling in vivo.

Journal ArticleDOI
TL;DR: It is demonstrated that overexpression of alpha4 protects cells from a variety of stress stimuli, including DNA damage and nutrient limitation, and plays a required role in regulating the assembly and maintenance of adaptive PP2A phosphatase complexes.

Journal ArticleDOI
TL;DR: The mechanisms underlying PP1 inhibition and the kinase/PP1 cross-talk mediated by CPI-17 and its related proteins, PHI, KEPI, and GBPI are discussed.

Journal ArticleDOI
TL;DR: An integrated model summarizing the contemporary understanding of phosphate signaling is presented, mainly in A. thaliana and O. sativa, and suggests regulation at the mRNA level can be an important mechanism of phosphate signalling, and that the leaf and the root may occupy two separate phosphate signaling programs.

Journal ArticleDOI
23 Jul 2009-Nature
TL;DR: It is shown that Eyes absent 4 (EYA4), originally identified as a co-transcription factor, stimulates the expression of IFN-β and CXCL10 in response to the undigested DNA of apoptotic cells, suggesting that EYA regulates the innate immune response by modulating the phosphorylation state of signal transducers for the intracellular pathogens.
Abstract: Innate immunity is stimulated not only by viral or bacterial components, but also by non-microbial danger signals (damage-associated molecular patterns). One of the damage-associated molecular patterns is chromosomal DNA that escapes degradation. In programmed cell death and erythropoiesis, DNA from dead cells or nuclei expelled from erythroblasts is digested by DNase II in the macrophages after they are engulfed. DNase II(-/-) (also known as Dnase2a(-/-)) mice suffer from severe anaemia or chronic arthritis due to interferon-beta (IFN-beta) and tumour necrosis factor-alpha (TNF-alpha) produced from the macrophages carrying undigested DNA in a Toll-like receptor (TLR)-independent mechanism. Here we show that Eyes absent 4 (EYA4), originally identified as a co-transcription factor, stimulates the expression of IFN-beta and CXCL10 in response to the undigested DNA of apoptotic cells. EYA4 enhanced the innate immune response against viruses (Newcastle disease virus and vesicular stomatitis virus), and could associate with signalling molecules (IPS-1 (also known as MAVS), STING (TMEM173) and NLRX1). Three groups have previously shown that EYA has phosphatase activity. We found that mouse EYA family members act as a phosphatase for both phosphotyrosine and phosphothreonine. The haloacid dehalogenase domain at the carboxy terminus contained the tyrosine-phosphatase, and the amino-terminal half carried the threonine-phosphatase. Mutations of the threonine-phosphatase, but not the tyrosine-phosphatase, abolished the ability of EYA4 to enhance the innate immune response, suggesting that EYA regulates the innate immune response by modulating the phosphorylation state of signal transducers for the intracellular pathogens.

Journal ArticleDOI
TL;DR: The results demonstrate that IBR5 is a bona fide MAPK phosphatase, and suggest that MPK12 is both a physiological substrate of I BR5 and a novel negative regulator of auxin signaling in Arabidopsis.
Abstract: Summary Mitogen-activated protein kinase (MAPK) phosphatases are important negative regulators in the MAPK signaling pathways responsible for many essential processes in plants, including development, stress management and hormonal responses. A mutation in INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5), which is predicted to encode a dual-specificity MAPK phosphatase, was previously reported to confer reduced sensitivity to auxin and ABA in Arabidopsis roots. To further characterize IBR5, and to understand how it might help integrate MAPK cascades with hormone signaling, we searched for IBR5-interacting MAPKs. Yeast two-hybrid assays, in vitro binding assays and in vivo protein co-immunoprecipitation studies demonstrated that MPK12 and IBR5 are physically coupled. The C-terminus of MPK12 appears to be essential for its interaction with IBR5, and in vitro dephosphorylation and immunocomplex kinase assays indicated that activated MPK12 is efficiently dephosphorylated and inactivated by IBR5. MPK12 and IBR5 mRNAs are both widely expressed across Arabidopsis tissues, and at the subcellular level each protein is predominantly localized in the nucleus. In transgenic plants with reduced expression of the MPK12 gene, root growth is hypersensitive to exogenous auxins, but shows normal ABA sensitivity. MPK12 suppression in an ibr5 background partially complements the ibr5 auxin-insensitivity phenotype. Our results demonstrate that IBR5 is a bona fide MAPK phosphatase, and suggest that MPK12 is both a physiological substrate of IBR5 and a novel negative regulator of auxin signaling in Arabidopsis.

Journal ArticleDOI
TL;DR: It is demonstrated that knockdown of PP2A inhibits forskolin-induced nuclear translocation of HDAC4 and attenuates the ability of this signaling molecule to repress collagen X expression in chondrocytes, indicating that PP2 A is critical for PTHrP-mediated regulation of chondROcyte hypertrophy.
Abstract: The maturation of immature chondrocytes to hypertrophic chondrocytes is regulated by parathyroid hormone-related peptide (PTHrP). We demonstrate that PTHrP or forskolin administration can block induction of collagen X-luciferase by exogenous Runx2, MEF2, and Smad1 in transfected chondrocytes. We have found that PTHrP/forskolin administration represses the transcriptional activity of MEF2 and that forced expression of MEF2-VP16 can restore expression of the collagen X reporter in chondrocytes treated with these agents. PTHrP/forskolin induces dephosphorylation of histone deacetylase 4 (HDAC4) phospho-S246, which decreases interaction of HDAC4 with cytoplasmic 14-3-3 proteins and promotes nuclear translocation of HDAC4 and repression of MEF2 transcriptional activity. We have found that forskolin increases the activity of an HDAC4 phospho-S246 phosphatase and that forskolin-induced nuclear translocation of HDAC4 was reversed by the protein phosphatase 2A (PP2A) antagonist, okadaic acid. Finally, we demonstrate that knockdown of PP2A inhibits forskolin-induced nuclear translocation of HDAC4 and attenuates the ability of this signaling molecule to repress collagen X expression in chondrocytes, indicating that PP2A is critical for PTHrP-mediated regulation of chondrocyte hypertrophy.

Journal ArticleDOI
TL;DR: The results suggest that this member of the PGAM family has crossed over from small molecules to protein substrates and been adapted to serve as a specialized activator of ASK1.
Abstract: Phosphoglycerate mutase (PGAM) is an enzyme of intermediary metabolism that converts 3-phosphoglycerate to 2-phosphoglycerate in glycolysis. Here, we discovered PGAM5 that is anchored in the mitochondrial membrane lacks PGAM activity and instead associates with the MAP kinase kinase kinase ASK1 and acts as a specific protein Ser/Thr phosphatase that activates ASK1 by dephosphorylation of inhibitory sites. Mutation of an active site His-105 in PGAM5 abolished phosphatase activity with ASK1 and phospho-Thr peptides as substrates. The Drosophila and Caenorhabditis elegans orthologs of PGAM5 also exhibit specific Ser/Thr phosphatase activity and activate the corresponding Drosophila and C. elegans ASK1 kinases. PGAM5 is unrelated to the other known Ser/Thr phosphatases of the PPP, MPP, and FCP families, and our results suggest that this member of the PGAM family has crossed over from small molecules to protein substrates and been adapted to serve as a specialized activator of ASK1.