scispace - formally typeset
Search or ask a question

Showing papers on "Photodiode published in 2004"


Journal ArticleDOI
TL;DR: The unitraveling-carrier photodiode (UTC-PD) as mentioned in this paper utilizes only electrons as the active carriers, which is the key for its ability to achieve excellent high-speed and high-output characteristics simultaneously.
Abstract: The unitraveling-carrier photodiode (UTC-PD) is a novel photodiode that utilizes only electrons as the active carriers. This unique feature is the key for its ability to achieve excellent high-speed and high-output characteristics simultaneously. To date, a record 3-dB bandwidth of 310 GHz and a millimeter-wave output power of over 20 mW at 100 GHz have been achieved. The superior capability of the UTC-PD for generating very large high-bit-rate electrical signals as well as a very high RF output power in millimeter/submillimeter ranges can lead to innovations in various systems, such as broadband optical communications systems, wireless communications systems, and high-frequency measurement systems. Accomplishments include photoreceivers of up to 160 Gb/s, error-free DEMUX operations using an integrated UTC-PD driven optical gate of up to 320 Gb/s, a 10-Gb/s millimeter-wave wireless link at 120 GHz, submillimeter-wave generation at frequencies of up to 1.5 THz, and photonic frequency conversion with an efficiency of -8 dB at 60 GHz. For the practical use, various types of modules, such as a 1-mm coaxial connector module, a rectangular-waveguide output module, and a quasi-optic module, have been developed. The superior reliability and stability are also confirmed demonstrating usefulness of the UTC-PD for the system applications.

369 citations


Journal ArticleDOI
25 Jun 2004-Science
TL;DR: A molecular photodiode system in which the photocurrent direction can be switched by choosing the wavelength of an irradiating light is prepared, composed of two types of helical peptides that carry different chromophores and have different directions of dipole moments when they are immobilized on gold.
Abstract: We prepared a molecular photodiode system in which the photocurrent direction can be switched by choosing the wavelength of an irradiating light. The molecular system is composed of two types of helical peptides that carry different chromophores and have different directions of dipole moments when they are immobilized on gold. The mixed, self-assembled monolayer generated an anodic photocurrent when one of the two chromophores was photoexcited, whereas the photocurrent switched to being cathodic when the other chromophore was photoexcited. The opposite current response arises from the dipole moment of each helical peptide, which accelerates electron transfer in the same direction.

299 citations


Journal ArticleDOI
TL;DR: In this article, a transimpedance amplifier was realized in a 0.6/spl mu/m digital CMOS technology for Gigabit Ethernet applications, which exploits the regulated cascode (RGC) configuration as the input stage, thus achieving as large effective input transconductance as Si Bipolar or GaAs MESFET.
Abstract: A transimpedance amplifier (TIA) has been realized in a 0.6-/spl mu/m digital CMOS technology for Gigabit Ethernet applications. The amplifier exploits the regulated cascode (RGC) configuration as the input stage, thus achieving as large effective input transconductance as that of Si Bipolar or GaAs MESFET. The RGC input configuration isolates the input parasitic capacitance including photodiode capacitance from the bandwidth determination better than common-gate TIA. Test chips were electrically measured on a FR-4 PC board, demonstrating transimpedance gain of 58 dB/spl Omega/ and -3-dB bandwidth of 950 MHz for 0.5-pF photodiode capacitance. Even with 1-pF photodiode capacitance, the measured bandwidth exhibits only 90-MHz difference, confirming the mechanism of the RGC configuration. In addition, the noise measurements show average noise current spectral density of 6.3 pA//spl radic/(Hz) and sensitivity of -20-dBm for a bit-error rate of 10/sup -12/. The chip core dissipates 85 mW from a single 5-V supply.

286 citations


Journal ArticleDOI
TL;DR: In this article, the electrical performance of organic polymer thin-film transistors under steady-state white-light illumination, as well as the performance of these devices as photodetectors, was studied.
Abstract: We have studied the electrical performance of organic polymer thin-film transistors (OP-TFTs) under steady-state white-light illumination, as well as the performance of these devices as photodetectors. The off-state drain current of the OP-TFT is significantly increased due to the illumination, while a smaller relative effect is observed on the drain current in the strong-accumulation regime. The illumination effectively decreases the threshold voltage of the device and increases the apparent subthreshold swing, while the field-effect mobility of the charge carriers in the polymer channel is unchanged. We have observed full recovery of our devices after the illumination is removed at room temperature. These observations are explained in terms of the photogeneration of excitons due to the absorbed photons. The photogenerated excitons subsequently diffuse and dissociate into free charge carriers, thereby enhancing the carrier density in the channel of the device. We have found broadband responsivities of approximately 0.7 mA/W for devices biased in the strong-accumulation regime and gate-to-source voltage-independent photosensitivities of approximately 10/sup 3/ for devices in the off-state. We also determine, for the first time, the flatband voltage of these devices to be about -2.3 V.

243 citations


Journal ArticleDOI
TL;DR: In this paper, a comparative study of plastic photodiodes using four different copolymers of fluorene, with a variation of alkyl side chain length and chemical structure, was performed.
Abstract: We report a comparative study of plastic photodiodes using four different copolymers of fluorene, with a variation of alkyl side chain length and chemical structure. Photodiode materials are formed by blending the polymers with a fullerene derivative and spincoating the blend solution. A photovoltage of 1 V is obtained in devices, where the anode is a doped polymer and the cathode is LiF/Al. Monochromatic quantum efficiencies are better than 40% over most of the absorption range, and under solar light AM 1.5 simulation, we reach energy efficiencies beyond 2%. The high fill factors obtained in some of the devices indicate that these are of interest for more elaborate optimisation. Reasons for the benign electrical transport are discussed.

179 citations


Journal ArticleDOI
TL;DR: In this article, a flexible optical waveguide film with integrated optoelectronic devices (vertical-cavity surface-emitting laser and p-i-n photodiode arrays) for fully embedded board-level optical interconnects was demonstrated.
Abstract: This paper demonstrates a flexible optical waveguide film with integrated optoelectronic devices (vertical-cavity surface-emitting laser (VCSEL) and p-i-n photodiode arrays) for fully embedded board-level optical interconnects. The optical waveguide circuit with 45/spl deg/ micromirror couplers was fabricated on a thin flexible polymeric substrate by soft molding. The 45/spl deg/ couplers were fabricated by cutting the waveguide with a microtome blade. The waveguide core material was SU-8 photoresist, and the cladding was cycloolefin copolymer. A thin VCSEL and p-i-n photodiode array were directly integrated on the waveguide film. Measured propagation loss of a waveguide was 0.6 dB/cm at 850 nm.

169 citations


Journal ArticleDOI
TL;DR: In this article, the fabrication and characterization of high-speed germanium detectors on silicon-on-insulator lateral PIN photodetectors was described, which achieved external quantum efficiency of 34% at 850 nm and 46% at 900 nm and dark current of 0.02/spl mu/A at 1-V bias.
Abstract: We report the fabrication and characterization of high-speed germanium on silicon-on-insulator lateral PIN photodetectors. At an incident wavelength of 850 nm, 10 /spl times/10-/spl mu/m detectors with finger spacing S of 0.4 /spl mu/m (0.6 /spl mu/m) produced a -3-dB bandwidth of 29 GHz (27 GHz) at a bias voltage of -1 V. The detectors with S=0.6 /spl mu/m had external quantum efficiency of 34% at 850 nm and 46% at 900 nm and dark current of 0.02 /spl mu/A at -1-V bias.

161 citations


Journal ArticleDOI
TL;DR: In this paper, charge compensation is utilized in an InGaAs-InP uni-traveling-carrier photodiode to mitigate the space-charge effect, which achieves a bandwidth of 25 GHz and large-signal 1-dB compression current greater than 90 mA.
Abstract: Charge compensation is utilized in an InGaAs-InP uni-traveling-carrier photodiode to mitigate the space-charge effect. A 20-/spl mu/m-diameter photodiode achieved a bandwidth of 25 GHz and large-signal 1-dB compression current greater than 90 mA; the output power at 20 GHz was 20 dBm. A smaller /spl sim/100-/spl mu/m/sup 2/ photodiode exhibited a bandwidth of 50 GHz and large-signal 1-dB compression current greater than 50 mA. The maximum RF output power at 40 GHz was 17 dBm.

134 citations


Patent
27 Oct 2004
TL;DR: An image sensor device may employ copper interconnections if a barrier metal layer is removed from above a photodiode as discussed by the authors, where the at least one electrical interconnection line includes a copper interconnection formation having a plurality of interlayer dielectric layers in a stacked configuration with a diffusion barrier layer between adjacent interlayer layers and intervening diffusion barrier layers.
Abstract: An image sensor device and method for forming the same include a photodiode formed in a substrate, at least one electrical interconnection line electrically associated with the photodiode, a light passageway having a light inlet, the light passageway being positioned in alignment with the photodiode, a color filter positioned over the light inlet of the light passageway and a lens positioned over the color filter in alignment with the light passageway wherein the at least one electrical interconnection line includes a copper interconnection formation having a plurality of interlayer dielectric layers in a stacked configuration with a diffusion barrier layer between adjacent interlayer dielectric layers, and a barrier metal layer between the copper interconnection formation and the plurality of interlayer dielectric layers and intervening diffusion barrier layers. An image sensor device may employ copper interconnections if a barrier metal layer is removed from above a photodiode.

127 citations


Patent
07 May 2004
TL;DR: In this paper, a method for detection of peak wavelength values of colorimetric resonant optical biosensors using tunable filters and tunable lasers is presented, where a photodiode sensor quantifies an amount of the light reflected or transmitted through the tunable filter as a function of the tuning voltage.
Abstract: An apparatus and method for detection of peak wavelength values of colorimetric resonant optical biosensors using tunable filters and tunable lasers is provided. Biomolecular interactions may be detected on a biosensor by directing collimated white light towards a surface of the biosensor. Molecular binding on the surface of the biosensor is indicated by a shift in the peak wavelength value of reflected or transmitted light from the biosensor, while an increase in the wavelength corresponds to an increase in molecular absorption. A tunable laser light source may generate the collimated white light and a tunable filter may receive the reflected or transmitted light and pass the light to a photodiode sensor. The photodiode sensor then quantifies an amount of the light reflected or transmitted through the tunable filter as a function of the tuning voltage of the tunable filter.

123 citations


Patent
16 Aug 2004
TL;DR: An optical system for acquiring fast spectra from spatially channel arrays includes a light source for producing a light beam that passes through the microfluidic chip or the channel to be monitored, one or more lenses or optical fibers for capturing the light from the light source after interaction with the particles or chemicals in the micro fluididic channels.
Abstract: An optical system for acquiring fast spectra from spatially channel arrays includes a light source for producing a light beam that passes through the microfluidic chip or the channel to be monitored, one or more lenses or optical fibers for capturing the light from the light source after interaction with the particles or chemicals in the microfluidic channels, and one or more detectors. The detectors, which may include light amplifying elements, detect each light signal and transducer the light signal into an electronic signal. The electronic signals, each representing the intensity of an optical signal, pass from each detector to an electronic data acquisition system for analysis. The light amplifying element or elements may comprise an array of phototubes, a multianode phototube, or a multichannel plate based image intensifier coupled to an array of photodiode detectors.

Journal ArticleDOI
TL;DR: In this paper, a back-illuminated solar-blind ultraviolet p-i-n photodetectors with a peak responsivity of 136 mA/W at 282 nm without bias were presented.
Abstract: We report AlGaN-based back-illuminated solar-blind ultraviolet p-i-n photodetectors with a peak responsivity of 136 mA/W at 282 nm without bias. This corresponds to a high external quantum efficiency of 60%, which improves to a value as high as 72% under 5 V reverse bias. We attribute the high performance of these devices to the use of a very-high quality AlN and Al0.87Ga0.13N/AlN superlattice material and a highly conductive Si–In co-doped Al0.5Ga0.5N layer.

Patent
30 Nov 2004
TL;DR: In this paper, a single etch is conducted to completely remove the interlevel dielectric and barrier layers that traverse the optical path, and the etched opening is then refilled with a layer of either reflective or absorptive material.
Abstract: An image sensor array and method of fabrication wherein the sensor includes Copper (Cu) metallization levels allowing for incorporation of a thinner interlevel dielectric stack with improved thickness uniformity to result in a pixel array exhibiting increased light sensitivity. In the sensor array, each Cu metallization level includes a Cu metal wire structure formed at locations between each array pixel and, a barrier material layer is formed on top each Cu metal wire structure that traverses the pixel optical path. By implementing a single mask or self-aligned mask methodology, a single etch is conducted to completely remove the interlevel dielectric and barrier layers that traverse the optical path. The etched opening is then refilled with dielectric material. Prior to depositing the refill dielectric, a layer of either reflective or absorptive material is formed along the sidewalls of the etched opening to improve sensitivity of the pixels by either reflecting light to the underlying photodiode or by eliminating light reflections.

Proceedings ArticleDOI
30 Aug 2004
TL;DR: In this paper, the authors developed a laser-illuminated, gated imaging system for long range target identification which has generated bright images at ranges in excess of 10km from modest laser energies.
Abstract: BAE SYSTEMS has developed a laser-illuminated, gated imaging system for long range target identification which has generated bright images at ranges in excess of 10km from modest laser energies. The system is based on a short pulsewidth laser and a custom detector for sensing the return pulse. The source is a Nd YAG laser converted by an optical parametric oscillator (OPO) to 1571nm and producing 20ns pulses at 15Hz. The detector (named SWIFT) is a 320x256 array of HgCdTe photodiodes operating with high avalanche gain to achieve sensitivities as low as 10 photon rms. A custom silicon multiplexer performs the signal injection and temporal gating function, and adds additional electronic gain. Trials show that the current detectors have gate edges equivalent to 1.5m in range and complete extinction of signals outside of the gated range. The detector is encapsulated in an integrated-detector-cooler-assembly and utilises standard productionised thermal imaging electronics to perform non-uniformity correction and grey scale images. Imaging trials using the camera have shown little excess noise, crosstalk or non-uniformity due to the use of avalanching in the HgCdTe photodiodes up to gains of over 100. The images have shown high spatial resolution arising from the use of solid state focal plane array technology. The imagery, collected both in the laboratory and in field trials, has been used to explore the phenomenology unique to laser-illuminated targets and to verify system models.

Journal ArticleDOI
TL;DR: A theory for electron avalanche multiplication has been developed using density of states and electron-interaction matrix elements associated with the unique band structure of HgCdTe, with allowances being made for the relevant scattering mechanisms of both electrons and holes at these temperatures.
Abstract: Exponential-gain values well in excess of 1,000 have been obtained in HgCdTe high-density, vertically integrated photodiode (HDVIP) avalanche photodiodes (APDs) with essentially zero excess noise. This phenomenon has been observed at temperatures in the range of 77–260 K for a variety of cutoff wavelengths in the mid-wavelength infrared (MWIR) band, with evidence of similar behavior in other IR bands. A theory for electron avalanche multiplication has been developed using density of states and electron-interaction matrix elements associated with the unique band structure of HgCdTe, with allowances being made for the relevant scattering mechanisms of both electrons and holes at these temperatures. This theory is used to develop an empirical model to fit the experimental data obtained at DRS Infrared Technologies. The functional dependence of gain on applied bias voltage is obtained by the use of one adjustable parameter relating electron energy to applied voltage. A more quantitative physical theory requires the use of Monte Carlo techniques incorporating the preceding scattering rates and ionization probabilities. This has been performed at the University of Texas at Austin, and preliminary data indicate good agreement with DRS models for both avalanche gain and excess noise as a function of applied bias. These data are discussed with a view to applications at a variety of wavelengths.

Journal ArticleDOI
TL;DR: In this paper, the I-V characteristics and photoresponse spectra have been measured and analyzed for a 5 mm/spl times/5 mm area device leakage current lower than 10/sup -15/ A at zero bias and 1.2/spltimes/10/sup 15/ cmHz/sup 1/2//W at 300 nm.
Abstract: Pt/4H-SiC Schottky photodiodes have been fabricated with the device areas up to 1 cm/sup 2/. The I-V characteristics and photoresponse spectra have been measured and analyzed. For a 5 mm/spl times/5 mm area device leakage current lower than 10/sup -15/ A at zero bias and 1.2/spl times/10/sup -14/ A at -1 V have been established. The quantum efficiency is over 30% from 240 to 320 nm. The specific detectivity, D/sup */, has been calculated from the directly measured leakage current and quantum efficiency are shown to be higher than 10/sup 15/ cmHz/sup 1/2//W from 210 to 350 nm with a peak D/sup */ of 3.6/spl times/10/sup 15/ cmHz/sup 1/2//W at 300 nm.

Journal ArticleDOI
TL;DR: In this paper, an improved detector structure that uses a PINN+ photodiode with an on-chip interference filter and a robust liquid barrier layer is presented, which yields high sensitivity (detection limit of 0.9 ng µl−1 of DNA), low-noise (S/N ~ 100/1) and enhanced quantum efficiencies (>80%) over the entire visible spectrum.
Abstract: Microfabrication techniques have become increasingly popular in the development of next generation DNA analysis devices. Improved on-chip fluorescence detection systems may have applications in developing portable hand-held instruments for point-of-care diagnostics. Miniaturization of fluorescence detection involves construction of ultra-sensitive photodetectors that can be integrated onto a fluidic platform combined with the appropriate optical emission filters. We have previously demonstrated integration PIN photodiodes onto a microfabricated electrophoresis channel for separation and detection of DNA fragments. In this work, we present an improved detector structure that uses a PINN+ photodiode with an on-chip interference filter and a robust liquid barrier layer. This new design yields high sensitivity (detection limit of 0.9 ng µl−1 of DNA), low-noise (S/N ~ 100/1) and enhanced quantum efficiencies (>80%) over the entire visible spectrum. Applications of these photodiodes in various areas of DNA analysis such as microreactions (PCR), separations (electrophoresis) and microfluidics (drop sensing) are presented.

Journal ArticleDOI
TL;DR: A polymer nanosheet assembly that serves as a molecular photoswitching and optical exclusive OR (EXOR) logic gate that displays a very small value when the phenanthrene and anthracene were excited simultaneously is described.
Abstract: We describe here a polymer nanosheet assembly that serves as a molecular photoswitching and optical exclusive OR (EXOR) logic gate. Separate polymer nanosheets (monolayers) containing phenanthrene, anthracene, and dinitrobenzene chromophore were prepared by the Langmuir-Blodgett technique (LB films). A bilayer-couple, consisting of phenanthrene (sensitizer) monolayer and dinitrobenzene (acceptor) monolayer, and the other couple, of anthracene monolayer and dinitrobenzene monolayer, were confirmed to function as a photodiode showing current rectification on light irradiation. The two photodiodes are connected as each photocurrent direction becomes opposite. In the polymer photodiode array (LB films), anodic photocurrent was observed when the anthracene was selectively excited. On the other hand, cathodic photocurrent was observed by selective excitation of the phenanthrene. Moreover, the output photocurrent displayed a very small value when the phenanthrene and anthracene were excited simultaneously. The performance is discussed for this gate's application to an optical EXOR logic gate.

Journal ArticleDOI
TL;DR: In this paper, the effects of monochromatic illumination on the electrical performance of organic polymer thin-film transistors (OP-TFTs) and the use of these devices as photosensors were investigated.
Abstract: We present our study of the effects of monochromatic illumination on the electrical performance of organic polymer thin-film transistors (OP-TFTs) and the use of these devices as photosensors. In the case of monochromatic illumination that is strongly absorbed by the polymer, the drain current of a device biased in the OFF-state is significantly increased and the threshold voltage is reduced. Light that is not strongly absorbed by the polymer has little effect on the electrical performance of the OP-TFTs. We explain these effects in terms of the photogeneration of excitons in the polymer channel region of the device. The density of excitons generated in the polymer depends on the energy of the incident photons, as well as on the irradiance level of the incident illumination. The photogenerated excitons subsequently dissociate into electrons and holes. The electrons can be trapped by positively charged states, thereby reducing the threshold voltage, while the photogenerated holes contribute to the excess photocurrent measured at the drain. To demonstrate the possible use of OP-TFTs as photosensors, we also present the responsivity, photosensitivity (signal-to-noise ratio), external quantum efficiency, noise-equivalent power, and specific detectivity of these devices. The dependence of these parameters on the incident photon energy and irradiance level is described.

Patent
Inna Patrick1
26 Mar 2004
TL;DR: In this article, a double-pinned photodiode with increased electron capacitance and a method for forming the same is presented. But the method is limited to the case of a single pin.
Abstract: A pinned photodiode, which is a double pinned photodiode having increased electron capacitance, and a method for forming the same are disclosed. The invention provides a pinned photodiode structure comprising a substrate base over which is a first layer of semiconductor material. There is a base layer of a first conductivity type, wherein the base layer of a first conductivity type is the substrate base or is a doped layer over the substrate base. At least one doped region of a second conductivity type is below the surface of said first layer, and extends to form a first junction with the base layer. A doped surface layer of a first conductivity type is over the at least one region of a second conductivity type and forms a second junction with said at least one region of a second conductivity type.

Journal ArticleDOI
TL;DR: In this article, the authors describe the design and performance of two widebandwidth photodiode structures, which achieve saturation currents (bandwidths) of >430mA (300 MHz) and 199 mA (1 GHz) for 100-spl mu/m/sup 2/ area devices.
Abstract: This paper describes the design and performance of two wide-bandwidth photodiode structures. The partially depleted absorber photodiode utilizes an absorbing layer consisting of both depleted and undepleted In/sub 0.53/Ga/sub 0.47/As layers. These photodiodes have achieved saturation currents (bandwidths) of >430 mA (300 MHz) and 199 mA (1 GHz) for 100-/spl mu/m-diameter devices and 24 mA (48 GHz) for 100-/spl mu/m/sup 2/ area devices. Charge compensation has also been utilized in a similar, but modified In/sub 0.53/Ga/sub 0.47/As-InP unitraveling-carrier photodiode design to predistort the electric field in the depletion region in order to mitigate space charge effects. For 20-/spl mu/m-diameter photodiodes the large-signal 1-dB compression current and bandwidth were /spl sim/90 mA and 25 GHz, respectively.

Journal ArticleDOI
TL;DR: A simple method is proposed to increase the sensitivity and control the linear range of axial position detection of a trapped microsphere in an optical trap by using a quadrant photodiode.
Abstract: We investigate the axial position detection of a trapped microsphere in an optical trap by using a quadrant photodiode. By replacing the photodiode with a CCD camera, we obtain detailed information on the light scattered by the microsphere. The correlation of the interference pattern with the axial position displays complex behavior with regions of positive and negative interference. By analyzing the scattered light intensity as a function of the axial position of the trapped sphere, we propose a simple method to increase the sensitivity and control the linear range of axial position detection.

Journal ArticleDOI
TL;DR: In this paper, the limiting speed of light emission from a p-n junction in the forward bias region is determined by the transit time of the minority carriers across the junction during the filament formation of breakdown currents, which is demonstrated by simulation of the propagation of a shockwave-like pattern in the breakdown field.
Abstract: The light emission process from a p-n junction in the forward-bias region is slow to respond to modulation signals due to the indirect band structure of silicon Experimental results for a reverse-bias region showing light modulation in the range of tens of gigahertz are observed for the first time For such a light emitter, the limiting speed of light modulation is shown to be determined by the transit time of the minority carriers across the junction during the filament formation of breakdown currents, which has been demonstrated by simulation of the propagation of a shockwave-like pattern in the breakdown field

Journal ArticleDOI
TL;DR: In this paper, a high-performance Al/sub x/Ga/sub 1-x/N-based photodetectors for solar-blind applications are reported.
Abstract: Design, fabrication, and characterization of high-performance Al/sub x/Ga/sub 1-x/N-based photodetectors for solar-blind applications are reported. Al/sub x/Ga/sub 1-x/N heterostructures were designed for Schottky, p-i-n, and metal-semiconductor-metal (MSM) photodiodes. The solar-blind photodiode samples were fabricated using a microwave compatible fabrication process. The resulting devices exhibited extremely low dark currents. Below 3fA, leakage currents at 6-V reverse bias were measured on p-i-n samples. The excellent current-voltage (I--V) characteristics led to a detectivity performance of 4.9/spl times/10/sup 14/ cmHz/sup 1/2/W/sup -1/. The MSM devices exhibited photoconductive gain, while Schottky and p-i-n samples displayed 0.09 and 0.11 A/W peak responsivity values at 267 and 261 nm, respectively. A visible rejection of 2/spl times/10/sup 4/ was achieved with Schottky samples. High-speed measurements at 267 nm resulted in fast pulse responses with greater than gigahertz bandwidths. The fastest devices were MSM photodiodes with a maximum 3-dB bandwidth of 5.4 GHz.

PatentDOI
Adam William Saxler1
TL;DR: In this paper, isolation means are disclosed to electrically and acoustically isolate the electronic device from the SAW device and vice versa, in some embodiments, a trench is formed between SAW devices and the electronic devices.
Abstract: A monolithic electronic device includes a substrate, a semi-insulating, piezoelectric Group III-nitride epitaxial layer formed on the substrate, a pair of input and output interdigital transducers forming a surface acoustic wave device on the epitaxial layer and at least one electronic device (such as a HEMT, MESFET, JFET, MOSFET, photodiode, LED or the like) formed on the substrate. Isolation means are disclosed to electrically and acoustically isolate the electronic device from the SAW device and vice versa. In some embodiments, a trench is formed between the SAW device and the electronic device. Ion implantation is also disclosed to form a semi-insulating Group III-nitride epitaxial layer on which the SAW device may be fabricated. Absorbing and/or reflecting elements adjacent the interdigital transducers reduce unwanted reflections that may interfere with the operation of the SAW device.

Patent
13 Feb 2004
TL;DR: In this article, the authors present a method for the detection of scintillation light emissions using photomultipliers and/or photodiodes, where the light guide is either active or non-active and segmented or not-segmented depending upon the embodiment of the design.
Abstract: A scintillation detector which includes a plurality of discrete scintillators composed of one or more scintillator materials. The discrete scintillators interact with incident radiation to produce a quantifiable number of photons with characteristic emission wavelength and decay time. A light guide is operatively associated with the scintillation crystals and may be either active or non-active and segmented or non-segmented depending upon the embodiment of the design. Photodetectors are provided to sense and quantify the scintillation light emissions. The process and system embodying various features of the present invention can be utilized in various applications such as SPECT, PET imaging and simultaneous PET systems. In accordance with the present invention, the detector array of the present invention incorporates either a single scintillator layer of discrete scintillators or discrete scintillators composed of two stacked different layers that can be the same scintillator material or of two different scintillator materials. In either case the different layers are composed of materials that have distinctly different decay times. The variants in these figures are the types of optical detectors which are used, i.e. photomultipliers and/or photodiodes, whether or not a segmented optical light guide is used, and whether the light guide is active or non-active. If a segmented optical light guide is used then the variant is whether the configuration is inverted or non-inverted.

Journal ArticleDOI
TL;DR: The ability to decode densely packed LSO scintillation blocks with compact APD arrays with good timing and energy resolution makes these detectors suitable for high resolution PET.
Abstract: Avalanche photodiodes (APDs) have proven to be useful as light detectors for high resolution positron emission tomography (PET). Their compactness makes these devices excellent candidates for replacing bulky photomultiplier tubes (PMTs) in PET systems where space limitations are an issue. The readout of densely packed, 10 × 10 lutetium oxyorthosilicate (LSO) block detectors (crystal size 2.0 × 2.0 × 12 mm3) with custom-built monolithic 3 × 3 APD arrays was investigated. The APDs had a 5 × 5 mm2 active surface and were arranged on a 6.25 mm pitch. The dead space on the edges of the array was 1.25 mm. The APDs were operated at a bias voltage of approximately 380 V for a gain of 100 and a dark current of 10 nA per APD. The standard deviation in gain between the APDs in the array ranged from 1.8 to 6.5% as the gain was varied from 50 to 108. A fast, low-noise, multi-channel charge sensitive preamplifier application-specific integrated circuit (ASIC) was developed for the APD readout. The amplifier had a rise time of 8 ns, a noise floor of 515 e− rms and a 9 e− pF−1 noise slope. An acquired flood image showed that all 100 crystals from the block detector could be resolved. Timing measurements with single-channel LSO-APD detectors, as well as with the array, against a plastic scintillator and PMT assembly showed a time resolution of 1.2 ns and 2.5 ns, respectively. The energy resolution measured with a single 4.0 × 4.0 × 10 mm3 LSO crystal, wrapped in four-layer polytetrafluoroethylene (PTFE) tape and coupled with optical grease on a single APD of the array, yielded 15% (full width at half maximum, FWHM) at 511 keV. Stability tests over 9 months of operation showed that the APD arrays do not degrade appreciably. These results demonstrate the ability to decode densely packed LSO scintillation blocks with compact APD arrays. The good timing and energy resolution makes these detectors suitable for high resolution PET.

Patent
23 Feb 2004
TL;DR: In this article, the authors proposed a microcrystalline copper indium diselenide/cadmium sulfide photodiode structure on a CMOS readout array.
Abstract: A MOS or CMOS sensor for high performance imaging in broad spectral ranges including portions of the infrared spectral band. These broad spectral ranges may also include portions or all of the visible spectrum, therefore the sensor has both daylight and night vision capabilities. The sensor includes a continuous multi-layer photodiode structure on a many pixel MOS or CMOS readout array where the photodiode structure is chosen to include responses in the near infrared spectral ranges. A preferred embodiment incorporates a microcrystalline copper indium diselenide/cadmium sulfide photodiode structure on a CMOS readout array. An alternate preferred embodiment incorporates a microcrystalline silicon germanium photodiode structure on a CMOS readout array. Each of these embodiments provides night vision with image performance that greatly surpasses the GEN III night vision technology in terms of enhanced sensitivity, pixel size and pixel count. Further advantages of the invention include low electrical bias voltages, low power consumption, compact packaging, and radiation hardness. In special preferred embodiments CMOS stitching technology is used to provide multi-million pixel focal plane array sensors. One embodiments of the invention made without stitching is a two-million pixel sensor. Other preferred embodiments available using stitching techniques include sensors with 250 million (or more) pixels fabricated on a single wafer. A particular application of these very high pixel count sensors is as a focal plane array for a rapid beam steering telescope in a low earth orbit satellite useful for tracking over a 1500-meter wide track with a resolution of 0.3 meter.

Patent
25 Oct 2004
TL;DR: In this paper, a photoelectric conversion apparatus with less leak current in a floating diffusion region is presented, which includes a photodiode for converting light into a signal charge, a first semiconductor region having a first conductivity type, a second diffusion region formed from a second semiconductor Region having a second conductivity Type for converting the signal charge generated by the photodiodes into a voltage, and an electrode formed above the first semiconducting region through an insulating film and having an effect of increasing a concentration of majority carriers in the first SVC region, in which
Abstract: A primary object of the present invention is to provide a photoelectric conversion apparatus with less leak current in a floating diffusion region. In order to obtain the above object, a photoelectric conversion apparatus according to the present invention includes a photodiode for converting light into a signal charge, a first semiconductor region having a first conductivity type, a floating diffusion region formed from a second semiconductor region having a second conductivity type for converting the signal charge generated by the photodiode into a signal voltage, the second semiconductor region being formed in the first semiconductor region, and an electrode formed above the first semiconductor region through an insulating film and having an effect of increasing a concentration of majority carriers in the first semiconductor region, in which the electrode is not formed above a depletion region formed from the second semiconductor region.

Patent
22 Jun 2004
TL;DR: In this paper, back-illuminated photodiode arrays have a substrate of a first conductivity type having first and second surfaces, the second surface having a layer of the first conductivities having a greater conductivity than the substrate.
Abstract: Ultra thin back-illuminated photodiode array structures and fabrication methods. The photodiode arrays are back illuminated photodiode arrays having a substrate of a first conductivity type having first and second surfaces, the second surface having a layer of the first conductivity type having a greater conductivity than the substrate. The arrays also have a matrix of regions of a first conductivity type of a higher conductivity than the substrate extending from the first surface of the substrate to the layer of the first conductivity type having a greater conductivity than the substrate, a plurality of regions of the second conductivity type interspersed within the matrix of regions of the first conductivity type and not extending to the layer of the first conductivity type on the second surface of the substrate, and a plurality of contacts on the first surface for making electrical contact to the matrix of regions of the first conductivity type and the plurality of regions of the second conductivity type.