scispace - formally typeset
Search or ask a question

Showing papers on "Photovoltaic system published in 2013"


Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Abstract: Many different photovoltaic technologies are being developed for large-scale solar energy conversion. The wafer-based first-generation photovoltaic devices have been followed by thin-film solid semiconductor absorber layers sandwiched between two charge-selective contacts and nanostructured (or mesostructured) solar cells that rely on a distributed heterojunction to generate charge and to transport positive and negative charges in spatially separated phases. Although many materials have been used in nanostructured devices, the goal of attaining high-efficiency thin-film solar cells in such a way has yet to be achieved. Organometal halide perovskites have recently emerged as a promising material for high-efficiency nanostructured devices. Here we show that nanostructuring is not necessary to achieve high efficiencies with this material: a simple planar heterojunction solar cell incorporating vapour-deposited perovskite as the absorbing layer can have solar-to-electrical power conversion efficiencies of over 15 per cent (as measured under simulated full sunlight). This demonstrates that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.

7,018 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the MPPT techniques applied to photovoltaic (PV) power system available until January, 2012 is provided, which is intended to serve as a convenient reference for future MPPT users in PV systems. But, confusion lies while selecting a MPPT as every technique has its own merits and demerits.
Abstract: This paper provides a comprehensive review of the maximum power point tracking (MPPT) techniques applied to photovoltaic (PV) power system available until January, 2012. A good number of publications report on different MPPT techniques for a PV system together with implementation. But, confusion lies while selecting a MPPT as every technique has its own merits and demerits. Hence, a proper review of these techniques is essential. Unfortunately, very few attempts have been made in this regard, excepting two latest reviews on MPPT [Salas, 2006], [Esram and Chapman, 2007]. Since, MPPT is an essential part of a PV system, extensive research has been revealed in recent years in this field and many new techniques have been reported to the list since then. In this paper, a detailed description and then classification of the MPPT techniques have made based on features, such as number of control variables involved, types of control strategies employed, types of circuitry used suitably for PV system and practical/commercial applications. This paper is intended to serve as a convenient reference for future MPPT users in PV systems.

1,584 citations


Journal ArticleDOI
TL;DR: This review will survey recent progress in the development of spectral converters, with a particular emphasis on lanthanide-based upconversion, quantum-cutting and down-shifting materials, for PV applications, and present technical challenges that arise in developing cost-effective high-performance solar cells based on these luminescent materials.
Abstract: Photovoltaic (PV) technologies for solar energy conversion represent promising routes to green and renewable energy generation. Despite relevant PV technologies being available for more than half a century, the production of solar energy remains costly, largely owing to low power conversion efficiencies of solar cells. The main difficulty in improving the efficiency of PV energy conversion lies in the spectral mismatch between the energy distribution of photons in the incident solar spectrum and the bandgap of a semiconductor material. In recent years, luminescent materials, which are capable of converting a broad spectrum of light into photons of a particular wavelength, have been synthesized and used to minimize the losses in the solar-cell-based energy conversion process. In this review, we will survey recent progress in the development of spectral converters, with a particular emphasis on lanthanide-based upconversion, quantum-cutting and down-shifting materials, for PV applications. In addition, we will also present technical challenges that arise in developing cost-effective high-performance solar cells based on these luminescent materials.

1,391 citations


Journal ArticleDOI
TL;DR: Evaluations among the most usual maximum power point tracking techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel [tracking factor) in relation to the available power, PV voltage ripple, dynamic response, and use of sensors.
Abstract: This paper presents evaluations among the most usual maximum power point tracking (MPPT) techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel [tracking factor (TF)] in relation to the available power, PV voltage ripple, dynamic response, and use of sensors. Using MatLab/Simulink and dSPACE platforms, a digitally controlled boost dc-dc converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented for conventional MPPT algorithms and improved MPPT algorithms named IC based on proportional-integral (PI) and perturb and observe based on PI. Moreover, the dynamic response and the TF are also evaluated using a user-friendly interface, which is capable of online program power profiles and computes the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods.

1,205 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.

1,069 citations


Journal ArticleDOI
28 Nov 2013-Nature
TL;DR: The ability of KBNNO to absorb three to six times more solar energy than the current ferroElectric materials suggests a route to viable ferroelectric semiconductor-based cells for solar energy conversion and other applications.
Abstract: Most known ferroelectric photovoltaic materials have very wide electronic bandgaps (that is, they absorb only high-energy photons) but here a family of perovskite oxides is described that have tunable bandgaps, allowing their use across the whole visible-light spectrum. The spontaneous electrical polarization that characterizes a ferroelectric material is attractive for solar-cell applications as the positive and negative charges generated by light absorption have a natural tendency to separate, making them easier to harvest efficiently. Unfortunately most known ferroelectrics have wide electronic bandgaps — that is they absorb only higher energy photons that make up a small fraction of the solar spectrum. Ilya Grinberg and colleagues now show that a classic ferroelectric can be chemically engineered to tune the bandgap over a broad range, achieving strong absorption and photocurrent generation across the solar spectrum. Ferroelectrics have recently attracted attention as a candidate class of materials for use in photovoltaic devices, and for the coupling of light absorption with other functional properties1,2,3,4,5,6,7. In these materials, the strong inversion symmetry breaking that is due to spontaneous electric polarization promotes the desirable separation of photo-excited carriers and allows voltages higher than the bandgap, which may enable efficiencies beyond the maximum possible in a conventional p–n junction solar cell2,6,8,9,10. Ferroelectric oxides are also stable in a wide range of mechanical, chemical and thermal conditions and can be fabricated using low-cost methods such as sol–gel thin-film deposition and sputtering3,5. Recent work3,5,11 has shown how a decrease in ferroelectric layer thickness and judicious engineering of domain structures and ferroelectric–electrode interfaces can greatly increase the current harvested from ferroelectric absorber materials, increasing the power conversion efficiency from about 10−4 to about 0.5 per cent. Further improvements in photovoltaic efficiency have been inhibited by the wide bandgaps (2.7–4 electronvolts) of ferroelectric oxides, which allow the use of only 8–20 per cent of the solar spectrum. Here we describe a family of single-phase solid oxide solutions made from low-cost and non-toxic elements using conventional solid-state methods: [KNbO3]1 − x[BaNi1/2Nb1/2O3 − δ]x (KBNNO). These oxides exhibit both ferroelectricity and a wide variation of direct bandgaps in the range 1.1–3.8 electronvolts. In particular, the x = 0.1 composition is polar at room temperature, has a direct bandgap of 1.39 electronvolts and has a photocurrent density approximately 50 times larger than that of the classic ferroelectric (Pb,La)(Zr,Ti)O3 material. The ability of KBNNO to absorb three to six times more solar energy than the current ferroelectric materials suggests a route to viable ferroelectric semiconductor-based cells for solar energy conversion and other applications.

1,041 citations


Journal ArticleDOI
TL;DR: The basic working principles and the state of the art device design of bulk heterojunction solar cells are reviewed and the importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterovoltaic cells are discussed.

923 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a methodology to predict hourly beam (direct) irradiation from available monthly averages, based upon combined previous literature findings and available meteorological data, and illustrate predictions for different selected STC locations.
Abstract: Concentrated solar power plants (CSPs) are gaining increasing interest, mostly as parabolic trough collectors (PTC) or solar tower collectors (STC). Notwithstanding CSP benefits, the daily and monthly variation of the solar irradiation flux is a main drawback. Despite the approximate match between hours of the day where solar radiation and energy demand peak, CSPs experience short term variations on cloudy days and cannot provide energy during night hours unless incorporating thermal energy storage (TES) and/or backup systems (BS) to operate continuously. To determine the optimum design and operation of the CSP throughout the year, whilst defining the required TES and/or BS, an accurate estimation of the daily solar irradiation is needed. Local solar irradiation data are mostly only available as monthly averages, and a predictive conversion into hourly data and direct irradiation is needed to provide a more accurate input into the CSP design. The paper (i) briefly reviews CSP technologies and STC advantages; (ii) presents a methodology to predict hourly beam (direct) irradiation from available monthly averages, based upon combined previous literature findings and available meteorological data; (iii) illustrates predictions for different selected STC locations; and finally (iv) describes the use of the predictions in simulating the required plant configuration of an optimum STC. The methodology and results demonstrate the potential of CSPs in general, whilst also defining the design background of STC plants.

834 citations


Journal ArticleDOI
TL;DR: In this paper, a brief discussion is presented regarding the operating temperature of one-sun commercial grade silicon-based solar cells/modules and its effect upon the electrical performance of photovoltaic installations.

826 citations


Journal ArticleDOI
TL;DR: In this paper, the technical features, energy consumption, environmental considerations, and potential of renewable energy use in driving the main desalination processes are reviewed and analyzed in order to compare the current and projected costs of water produced from conventional and renewable energy-driven processes.
Abstract: Desalination technologies improve water quality, greatly reduce water shortage problems, and improve quality of life and economic status. Two main technologies are currently used in water desalination: thermal (phase-change) processes and membrane processes. The primary thermal distillation processes include multistage flash distillation (MSF), multi-effect distillation (MED), and vapor compression (VC). The VC process encompasses two types: mechanical (MVC) and thermal (TVC). The common membrane desalination processes include reverse osmosis (RO) and electrodialysis (ED and EDR). Energy cost, operational and maintenance cost, and capital investment are the main contributors to the water production cost of any of these processes. The energy cost is responsible for about 50% of the produced water cost. For thermal distillation processes (MSF, MED, and TVC), two energy forms are required for the operation: (1) low-temperature heat, which represents the main portion of the energy input and is usually supplied to the system by a number of external sources (e.g., fossil fuel, waste energy, nuclear, solar) and (2) electricity, which is used to drive the system's pumps and other electrical components. For the MVC thermal distillation process, only electricity is needed. For membrane processes (RO and ED), only electricity is required as an energy input. Renewable energy systems such as solar thermal, solar photovoltaic, wind, and geothermal technologies are currently used as energy suppliers for desalination systems. These renewable resources are now a proven technology and remain economically promising for remote regions, where connection to the public electric grid is either not cost effective or feasible, and where water scarcity is severe. As the technologies continue to improve, and as fresh water becomes scarce and fossil fuel energy prices rise, renewable energy desalination becomes more viable economically. The technical features, energy consumption, environmental considerations, and potential of renewable energy use in driving the main desalination processes are reviewed and analyzed in this paper. The current and projected costs of water produced from conventional and renewable-energy-driven processes are discussed and compared.

814 citations


Journal ArticleDOI
TL;DR: In this article, an effective GW method incorporating spin-orbit coupling was developed to accurately model the electronic, optical and transport properties of hybrid AMX3 perovskites, and they were discussed in light of their exploitation for solar cells, and found to be entirely due to relativistic effects.
Abstract: Hybrid AMX3 perovskites (A=Cs, CH3NH3; M=Sn, Pb; X=halide) have revolutionized the scenario of emerging photovoltaic technologies. Introduced in 2009 by Kojima et al., a rapid evolution very recently led to 15% efficient solar cells. CH3NH3PbI3 has so far dominated the field, while the similar CH3NH3SnI3 has not been explored for photovoltaic applications, despite the reduced band-gap. Replacement of Pb by the more environment-friendly Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 properties are discussed in light of their exploitation for solar cells, and found to be entirely due to relativistic effects.

Journal ArticleDOI
01 May 2013-Energy
TL;DR: In this paper, the progress made in solar power generation research and development since its inception is reviewed, highlighting the current and future issues involved in the generation of quality and reliable solar power technology for future applications.

Journal ArticleDOI
TL;DR: A fingerprint of the charge accumulation in high density of states of the perovskite absorber material has been observed at the capacitance of the samples, indicating that it constitutes a new kind of photovoltaic device, differentiated from sensitized solar cells, which will require its own methods of study, characterization and optimization.
Abstract: Photovoltaic conversion requires two successive steps: accumulation of a photogenerated charge and charge separation. Determination of how and where charge accumulation is attained and how this accumulation can be identified is mandatory for understanding the performance of a photovoltaic device and for its further optimization. Here we analyse the mechanism of carrier accumulation in lead halide perovskite, CH3NH3PbI3, thin-absorber solar cells by means of impedance spectroscopy. A fingerprint of the charge accumulation in high density of states of the perovskite absorber material has been observed at the capacitance of the samples. This is, as far as we know, the first observation of charge accumulation in light-absorbing material for nanostructured solar cells, indicating that it constitutes a new kind of photovoltaic device, differentiated from sensitized solar cells, which will require its own methods of study, characterization and optimization.

Journal ArticleDOI
TL;DR: In this article, a single core-shell p-i-n junction GaAs nanowire solar cell grown on a silicon substrate was shown to achieve a short-circuit current of 180 mA cm-2 at 1 sun illumination, more than one order of magnitude higher than that predicted from the Lambert-Beer law.
Abstract: Light management is of great importance in photovoltaic cells, as it determines the fraction of incident light entering the device. An optimal p–n junction combined with optimal light absorption can lead to a solar cell efficiency above the Shockley–Queisser limit. Here, we show how this is possible by studying photocurrent generation for a single core–shell p–i–n junction GaAs nanowire solar cell grown on a silicon substrate. At 1 sun illumination, a short-circuit current of 180 mA cm –2 is obtained, which is more than one order of magnitude higher than that predicted from the Lambert–Beer law. The enhanced light absorption is shown to be due to a light-concentrating property of the standing nanowire, as shown by photocurrent maps of the device. The results imply new limits for the maximum efficiency obtainable with III–V based nanowire solar cells under 1 sun illumination.

Journal ArticleDOI
TL;DR: In this article, a smoothing control method for reducing wind/photovoltaic (PV)/BESS hybrid output power fluctuations and regulating battery state of charge (SOC) under the typical conditions is proposed.
Abstract: The battery energy storage station (BESS) is the current and typical means of smoothing wind- or solar-power generation fluctuations. Such BESS-based hybrid power systems require a suitable control strategy that can effectively regulate power output levels and battery state of charge (SOC). This paper presents the results of a wind/photovoltaic (PV)/BESS hybrid power system simulation analysis undertaken to improve the smoothing performance of wind/PV/BESS hybrid power generation and the effectiveness of battery SOC control. A smoothing control method for reducing wind/PV hybrid output power fluctuations and regulating battery SOC under the typical conditions is proposed. A novel real-time BESS-based power allocation method also is proposed. The effectiveness of these methods was verified using MATLAB/SIMULINK software.

Journal ArticleDOI
18 Oct 2013-Science
TL;DR: Time-resolved transient absorption and photoluminescence are used to show that the effective diffusion lengths are indeed relatively large in CH3NH3PbI3, about 100 nm for both electrons and holes—a high value for a semiconductor formed from solution at low temperature.
Abstract: Photovoltaic (PV) cells that convert sunlight directly into electricity are becoming increasingly important in the world's renewable energy mix. The cumulative world PV installations reached around 100 GWp (gigawatts) ( 1 ) by the end of 2012. Some 85% use crystalline Si, with the rest being polycrystalline thin film cells, mostly cadmium telluride/cadmium sulfide ones. Thin-film cells tend to be cheaper to make with a shorter energy payback time. However, they do have the disadvantage, one that may become crucial when considering the terawatt range, that most of them contain rare elements like tellurium (as rare as gold), indium, and gallium. A newcomer to the PV field ( 2 ) has rapidly reached conversion efficiencies of more than 15% (see the figure). Based on organic-inorganic perovskite-structured semiconductors, the most common of which is the triiodide (CH3NH3PbI3), these perovskites tend to have high charge-carrier mobilities ( 3 , 4 ). High mobility is important because, together with high charge carrier lifetimes, it means that the light-generated electrons and holes can move large enough distances to be extracted as current, instead of losing their energy as heat within the cell. On pages 344 and 341 of this issue, Xing et al. ( 5 ) and Stranks et al. ( 6 ) use time-resolved transient absorption and photoluminescence to show that the effective diffusion lengths are indeed relatively large in CH3NH3PbI3, about 100 nm for both electrons and holes—a high value for a semiconductor formed from solution at low temperature.

Journal ArticleDOI
TL;DR: In this paper, the impact of increased penetration of photovoltaic (PV) systems on static performance as well as transient stability of a large power system, in particular the transmission system, is examined.
Abstract: Present renewable portfolio standards are changing power systems by replacing conventional generation with alternate energy resources such as photovoltaic (PV) systems. With the increase in penetration of PV resources, power systems are expected to experience a change in dynamic and operational characteristics. This paper studies the impact of increased penetration of PV systems on static performance as well as transient stability of a large power system, in particular the transmission system. Utility scale and residential rooftop PVs are added to the aforementioned system to replace a portion of conventional generation resources. While steady state voltages are observed under various PV penetration levels, the impact of reduced inertia on transient stability performance is also examined. The studied system is a large test system representing a portion of the Western U.S. interconnection. The simulation results obtained effectively identify both detrimental and beneficial impacts of increased PV penetration both for steady state stability and transient stability performance.

Journal ArticleDOI
TL;DR: The proposed EMS is implemented for a microgrid composed of photovoltaic panels, two wind turbines, a diesel generator and an energy storage system and the results show the economic sense of the proposal.
Abstract: A novel energy management system (EMS) based on a rolling horizon (RH) strategy for a renewable-based microgrid is proposed. For each decision step, a mixed integer optimization problem based on forecasting models is solved. The EMS provides online set points for each generation unit and signals for consumers based on a demand-side management (DSM) mechanism. The proposed EMS is implemented for a microgrid composed of photovoltaic panels, two wind turbines, a diesel generator and an energy storage system. A coherent forecast information scheme and an economic comparison framework between the RH and the standard unit commitment (UC) are proposed. Solar and wind energy forecasting are based on phenomenological models with updated data. A neural network for two-day-ahead electric consumption forecasting is also designed. The system is tested using real data sets from an existent microgrid in Chile (ESUSCON). The results based on different operation conditions show the economic sense of the proposal. A full practical implementation of the system for ESUSCON is envisioned.

Journal ArticleDOI
TL;DR: In this paper, a review of polymer donor-polymer acceptor (all polymer) BHJ OPVs is presented, highlighting the initial breakthroughs and recent progress in the development of polymer acceptor materials.

Journal ArticleDOI
TL;DR: Small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible performance, higher mobility and open circuit voltage, and easier synthetic control that leads to more diversified structures.
Abstract: Energy remains a critical issue for the survival and prosperity of humancivilization. Many experts believe that the eventual solution for sustainable energy is the use of direct solar energy as the main energy source. Among the options for renewable energy, photovoltaic technologies that harness solar energy offer a way to harness an unlimited resource and minimum environment impact in contrast with other alternatives such as water, nuclear, and wind energy.Currently, almost all commercial photovoltaic technologies use Si-based technology, which has a number of disadvantages including high cost, lack of flexibility, and the serious environmental impact of the Si industry. Other technologies, such as organic photovoltaic (OPV) cells, can overcome some of these issues. Today, polymer-based OPV (P-OPV) devices have achieved power conversion efficiencies (PCEs) that exceed 9%. Compared with P-OPV, small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible...

Journal ArticleDOI
TL;DR: In this article, the authors present an in-depth review of the current methods used to forecast solar irradiance in order to facilitate selection of the appropriate forecast method according to needs.
Abstract: Integration of solar energy into the electricity network is becoming essential because of its continually increasing growth in usage. An efficient use of the fluctuating energy output of photovoltaic (PV) systems requires reliable forecast information. In fact, this integration can offer a better quality of service if the solar irradiance variation can be predicted with great accuracy. This paper presents an in-depth review of the current methods used to forecast solar irradiance in order to facilitate selection of the appropriate forecast method according to needs. The study starts with a presentation of statistical approaches and techniques based on cloud images. Next numerical weather prediction or NWP models are detailed before discussing hybrid models. Finally, we give indications for future solar irradiance forecasting approaches dedicated to the management of small-scale insular grids.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the most important studies on the major components of central receiver solar thermal power plants including the heliostat field, the solar receiver and the power conversion system.
Abstract: The use of central receiver system (CRS) for electricity production promises to be one of the most viable options to replace fossil fuel power plants. Indeed, research and development activities on its basic subsystems have been booming rapidly since 1980s. This paper reviews the most important studies on the major components of central receiver solar thermal power plants including the heliostat field, the solar receiver and the power conversion system. After an overview of Concentrating Solar Power (CSP) technology, current status and applications of the CRSs are highlighted. Next, a detailed literature survey of existing design comprising optical, thermal and thermodynamic analysis, and techniques used to assess components have been arranged. This is followed by experimental investigations in which design concepts are established. The last section contains recent subsequent improvement of such key components as heliostat, receiver and hybrid solar gas turbine that are boosting in many R&D activities merging international collaboration during the past 30 years.

Journal ArticleDOI
TL;DR: The operational mechanism of OPV cells is explained, the detailed balance limit to photovoltaic energy conversion is outlined, and the various approaches that have been developed to estimate the maximum practically achievable efficiency in OPV are discussed, based on empirical knowledge of organic semiconductor materials.
Abstract: The power conversion efficiency of the most efficient organic photovoltaic (OPV) cells has recently increased to over 10%. To enable further increases, the factors limiting the device efficiency in OPV must be identified. In this review, the operational mechanism of OPV cells is explained and the detailed balance limit to photovoltaic energy conversion, as developed by Shockley and Queisser, is outlined. The various approaches that have been developed to estimate the maximum practically achievable efficiency in OPV are then discussed, based on empirical knowledge of organic semiconductor materials. Subsequently, approaches made to adapt the detailed balance theory to incorporate some of the fundamentally different processes in organic solar cells that originate from using a combination of two complementary, donor and acceptor, organic semiconductors using thermodynamic and kinetic approaches are described. The more empirical formulations to the efficiency limits provide estimates of 10-12%, but the more fundamental descriptions suggest limits of 20-24% to be reachable in single junctions, similar to the highest efficiencies obtained for crystalline silicon p-n junction solar cells. Closing this gap sets the stage for future materials research and development of OPV.

Journal ArticleDOI
TL;DR: Results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells, using single junction and double junction tandem solar cells.
Abstract: A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm−2). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells.

Journal ArticleDOI
TL;DR: The development in solar PV technology is growing very fast in recent years due to technological improvement, cost reductions in materials and government support for renewable energy based electricity production as mentioned in this paper, which makes photovoltaic as one of the fastest growing industries.
Abstract: The development in solar PV technology is growing very fast in recent years due to technological improvement, cost reductions in materials and government support for renewable energy based electricity production. Photovoltaic is playing an important role to utilize solar energy for electricity production worldwide. At present, the PV market is growing rapidly with worldwide around 23.5 GW in 2010 and also growing at an annual rate of 35–40%, which makes photovoltaic as one of the fastest growing industries. The efficiency of solar cell is one of the important parameter in order to establish this technology in the market. Presently, extensive research work is going for efficiency improvement of solar cells for commercial use. The efficiency of monocrystalline silicon solar cell has showed very good improvement year by year. It starts with only 15% in 1950s and then increase to 17% in 1970s and continuously increase up to 28% nowadays. The growth in solar photovoltaic technologies including worldwide status, materials for solar cells, efficiency, factor affecting the performance of PV module, overview on cost analysis of PV and its environmental impact are reviewed in this paper.

Journal ArticleDOI
TL;DR: In this article, the authors examined the sustainability and environmental performance of PV-based electricity generation systems by conducting a thorough review of the life cycle assessment (LCA) studies of five common photovoltaic (PV) systems, i.e., mono-crystalline (mono-Si), multi-crystaline (multi-Si) multi-Si, amorphous silicon (aSi), CdTe thin film (CdTe) and CIS thin film, and some advanced PV systems.
Abstract: This paper aims to examine the sustainability and environmental performance of PV-based electricity generation systems by conducting a thorough review of the life cycle assessment (LCA) studies of five common photovoltaic (PV) systems, i.e., mono-crystalline (mono-Si), multi-crystalline (multi-Si), amorphous silicon (a-Si), CdTe thin film (CdTe) and CIS thin film (CIS), and some advanced PV systems. The results show that, among the five common PV systems, the CdTe PV system presents the best environmental performance in terms of energy payback time (EPBT) and greenhouse gases (GHG) emission rate due to its low life-cycle energy requirement and relatively high conversion efficiency. Meanwhile, the mono-Si PV system demonstrates the worst because of its high energy intensity during the solar cells’ production process. The EPBT and GHG emission rate of thin film PV systems are within the range of 0.75–3.5 years and 10.5–50 g CO 2 -eq./kW h, respectively. In general, the EPBT of mono-Si PV systems range from 1.7 to 2.7 years with GHG emission rate from 29 to 45 g CO 2 -eq./kW h, which is an order of magnitude smaller than that of fossil-based electricity. This paper also reviews the EPBT and GHG emission rates of some advanced PV systems, such as high-concentration, heterojunction and dye-sensitized technologies. The EBPT of high-concentration PV system is lower, ranging from 0.7 to 2.0 years, but the CO 2 emission rate of dye-sensitized PV system is higher than the ones of other PV systems at the moment. The LCA results show that PV technologies are already proved to be very sustainable and environmental-friendly in the state of the art. With the emerging of new manufacturing technologies, the environmental performance of PV technologies is expected to be further improved in the near future. In addition, considering the existing limitations in the previous LCA studies, a few suggestions are recommended.

Journal ArticleDOI
TL;DR: In this paper, a classification scheme for MPPT methods based on three categories: offline, online and hybrid methods is introduced, which can provide a convenient reference for future work in PV power generation, is based on the manner in which the control signal is generated and the PV power system behavior as it approaches steady state conditions.
Abstract: In recent years there has been a growing attention towards use of solar energy. The main advantages of photovoltaic (PV) systems employed for harnessing solar energy are lack of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behavior of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. A variety of MPPT methods have been proposed and implemented. This review paper introduces a classification scheme for MPPT methods based on three categories: offline, online and hybrid methods. This classification, which can provide a convenient reference for future work in PV power generation, is based on the manner in which the control signal is generated and the PV power system behavior as it approaches steady state conditions. Some of the methods from each class are simulated in Matlab/Simulink environment in order to compare their performance. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.

Journal ArticleDOI
TL;DR: In this paper, the authors consider the recent dramatic reductions in the underlying costs and market prices of solar photovoltaic (PV) systems, and their implications for decision-makers.

Journal ArticleDOI
TL;DR: The main techniques that will be deliberated are the Perturb and Observe, Incremental Conductance and Hill Climbing, as well as the more recent MPPT approaches using soft computing methods such as Fuzzy Logic Control, Artificial Neural Network and Evolutionary Algorithms.
Abstract: This paper presents a review on the state-of-the-art maximum power point tracking (MPPT) techniques for PV power system applications. The main techniques that will be deliberated are the Perturb and Observe, Incremental Conductance and Hill Climbing. The coverage will also encompass their variations and adaptive forms. In addition, the more recent MPPT approaches using soft computing methods such as Fuzzy Logic Control, Artificial Neural Network and Evolutionary Algorithms are included. Whilst the paper provides as thorough treatment of MPPT at normal (uniform) insolation, its focus will be on the applications of the abovementioned techniques during partial shading conditions. It is envisaged that this review work will be a source of valuable information for PV professionals to keep abreast with the latest progress in this area, as well as for new researchers to get started on MPPT.

Journal ArticleDOI
TL;DR: Recent work to image and control nanostructure in polymer-based solar cells is reviewed, and very recent progress is described using the unique properties of organic semiconductors to develop strategies that may allow the Shockley–Queisser limit to be broken in a simple photovoltaic cell.
Abstract: This article reviews the motivations for developing polymer-based photovoltaics and describes some of the material systems used. Current challenges are identified, and some recent developments in the field are outlined. In particular, recent work to image and control nanostructure in polymer-based solar cells is reviewed, and very recent progress is described using the unique properties of organic semiconductors to develop strategies that may allow the Shockley–Queisser limit to be broken in a simple photovoltaic cell.