scispace - formally typeset
Search or ask a question

Showing papers on "Quantum dot published in 2012"


Journal ArticleDOI
TL;DR: It is reported that during the acid treatment and chemical exfoliation of traditional pitch-based carbon fibers, that are both cheap and commercially available, the stacked graphitic submicrometer domains of the fibers are easily broken down, leading to the creation of GQDs with different size distribution in scalable amounts.
Abstract: Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating optical and electronic properties. These have been synthesized either by nanolithography or from starting materials such as graphene oxide (GO) by the chemical breakdown of their extended planar structure, both of which are multistep tedious processes. Here, we report that during the acid treatment and chemical exfoliation of traditional pitch-based carbon fibers, that are both cheap and commercially available, the stacked graphitic submicrometer domains of the fibers are easily broken down, leading to the creation of GQDs with different size distribution in scalable amounts. The as-produced GQDs, in the size range of 1–4 nm, show two-dimensional morphology, most of which present zigzag edge structure, and are 1–3 atomic layers thick. The photoluminescence of the GQDs can be tailored through varying the size of the GQDs by changing process parameters. Due to the luminescence stability, nanosecond lifetime, ...

1,980 citations


Journal ArticleDOI
TL;DR: A gain of ∼10(8) electrons per photon and a responsivity of ∼ 10(7) A W(-1) in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots is demonstrated.
Abstract: A phototransistor in which electric charges are absorbed by colloidal quantum dots and circulated in graphene exhibits high values for gain, responsivity and specific detectivity.

1,921 citations


Journal ArticleDOI
TL;DR: A simple electrochemical approach to luminescent and electrocatalytically active nitrogen-doped GQDs (N-GQDs) with oxygen-rich functional groups is reported, which allows them to be used for biomedical imaging and other optoelectronic applications.
Abstract: Graphene quantum dots (GQDs) represent a new class of quantum dots with unique properties. Doping GQDs with heteroatoms provides an attractive means of effectively tuning their intrinsic properties and exploiting new phenomena for advanced device applications. Herein we report a simple electrochemical approach to luminescent and electrocatalytically active nitrogen-doped GQDs (N-GQDs) with oxygen-rich functional groups. Unlike their N-free counterparts, the newly produced N-GQDs with a N/C atomic ratio of ca. 4.3% emit blue luminescence and possess an electrocatalytic activity comparable to that of a commercially available Pt/C catalyst for the oxygen reduction reaction (ORR) in an alkaline medium. In addition to their use as metal-free ORR catalysts in fuel cells, the superior luminescence characteristic of N-GQDs allows them to be used for biomedical imaging and other optoelectronic applications.

1,796 citations


Journal ArticleDOI
01 Oct 2012-Carbon
TL;DR: An easy bottom-up method for the preparation of photoluminescent (PL) graphene quantum dots (GQDs) and graphene oxide (GO) has been developed by tuning the carbonization degree of citric acid and dispersing the carbonized products into alkaline solutions as mentioned in this paper.

1,487 citations


Journal ArticleDOI
10 May 2012-ACS Nano
TL;DR: The G QDs are capable of converting blue light into white light when the GQDs are coated onto a blue light emitting diode and the photoluminescence quantum yields were determined to be 7-11%.
Abstract: Glucose-derived water-soluble crystalline graphene quantum dots (GQDs) with an average diameter as small as 1.65 nm (∼5 layers) were prepared by a facile microwave-assisted hydrothermal method. The GQDs exhibits deep ultraviolet (DUV) emission of 4.1 eV, which is the shortest emission wavelength among all the solution-based QDs. The GQDs exhibit typical excitation wavelength-dependent properties as expected in carbon-based quantum dots. However, the emission wavelength is independent of the size of the GQDs. The unique optical properties of the GQDs are attributed to the self-passivated layer on the surface of the GQDs as revealed by electron energy loss spectroscopy. The photoluminescence quantum yields of the GQDs were determined to be 7–11%. The GQDs are capable of converting blue light into white light when the GQDs are coated onto a blue light emitting diode.

1,465 citations


Journal ArticleDOI
TL;DR: It is shown that this zero-bias conductance peak structure in the Nb-InSb nanowire-Nb hybrid quantum device can persist over a large range of applied magnetic fields and could be interpreted as a transport signature of Majorana fermions in the InSb Nanowire.
Abstract: Semiconductor InSb nanowires are expected to provide an excellent material platform for the study of Majorana fermions in solid state systems. Here, we report on the realization of a Nb-InSb nanowire-Nb hybrid quantum device and the observation of a zero-bias conductance peak structure in the device. An InSb nanowire quantum dot is formed in the device between the two Nb contacts. Due to the proximity effect, the InSb nanowire segments covered by the superconductor Nb contacts turn to superconductors with a superconducting energy gap Δ(InSb) ∼ 0.25 meV. A tunable critical supercurrent is observed in the device in high back gate voltage regions in which the Fermi level in the InSb nanowire is located above the tunneling barriers of the quantum dot and the device is open to conduction. When a perpendicular magnetic field is applied to the devices, the critical supercurrent is seen to decrease as the magnetic field increases. However, at sufficiently low back gate voltages, the device shows the quasi-particle Coulomb blockade characteristics and the supercurrent is strongly suppressed even at zero magnetic field. This transport characteristic changes when a perpendicular magnetic field stronger than a critical value, at which the Zeeman energy in the InSb nanowire is E(z) ∼ Δ(InSb), is applied to the device. In this case, the transport measurements show a conductance peak at the zero bias voltage and the entire InSb nanowire in the device behaves as in a topological superconductor phase. We also show that this zero-bias conductance peak structure can persist over a large range of applied magnetic fields and could be interpreted as a transport signature of Majorana fermions in the InSb nanowire.

1,374 citations


Journal ArticleDOI
TL;DR: The density of midgap trap states in CQD solids is quantified and shown to be limited by electron-hole recombination due to these states, and a robust hybrid passivation scheme is developed that can passivate trap sites that are inaccessible to much larger organic ligands.
Abstract: Improved performance in a photovoltaic device made of colloidal quantum dots is achieved through a combination of passivation by halide anions and organic crosslinking.

1,183 citations


Journal ArticleDOI
TL;DR: In this article, the intrinsic state emission plays a leading role, as opposed to defect state emission in GQDs, and the luminescence mechanism (the competition between both the defect state emissions and intrinsic state emissions) is explored in detail.
Abstract: The bandgap in graphene-based materials can be tuned from 0 eV to that of benzene by changing size and/or surface chemistry, making it a rising carbonbased fl uorescent material. Here, the surface chemistry of small size graphene (graphene quantum dots, GQDs) is tuned programmably through modifi cation or reduction and green luminescent GQDs are changed to blue luminescent GQDs. Several tools are employed to characterize the composition and morphology of resultants. More importantly, using this system, the luminescence mechanism (the competition between both the defect state emission and intrinsic state emission) is explored in detail. Experiments demonstrate that the chemical structure changes during modifi cation or reduction suppresses non-radiative recombination of localized electron-hole pairs and/or enhances the integrity of surface π electron network. Therefore the intrinsic state emission plays a leading role, as opposed to defect state emission in GQDs. The results of time-resolved measurements are consistent with the suggested PL mechanism. Up-conversion PL of GQDs is successfully applied in near-IR excitation for bioimaging.

1,000 citations


Journal ArticleDOI
TL;DR: To make Quantum Dot Sensitized Solar Cells competitive, it is necessary to achieve power conversion efficiencies comparable to other emerging solar cell technologies, and employing Mn(2+) doping of CdS has now succeeded in significantly improving QDSC performance.
Abstract: To make Quantum Dot Sensitized Solar Cells (QDSC) competitive, it is necessary to achieve power conversion efficiencies comparable to other emerging solar cell technologies. By employing Mn2+ doping of CdS, we have now succeeded in significantly improving QDSC performance. QDSC constructed with Mn-doped-CdS/CdSe deposited on mesoscopic TiO2 film as photoanode, Cu2S/Graphene Oxide composite electrode, and sulfide/polysulfide electrolyte deliver power conversion efficiency of 5.4%.

888 citations


Journal ArticleDOI
20 Jul 2012-ACS Nano
TL;DR: High resolution scanning transmission electron microscope (STEM) imaging reveals the coexistence of metallic and semiconducting phases within the chemically homogeneous two-dimensional MoS(2) nanosheets, suggesting potential for exploiting molecular scale electronic device designs in atomically thin 2D layers.
Abstract: Nanoscale heterostructures with quantum dots, nanowires, and nanosheets have opened up new routes toward advanced functionalities and implementation of novel electronic and photonic devices in reduced dimensions. Coherent and passivated heterointerfaces between electronically dissimilar materials can be typically achieved through composition or doping modulation as in GaAs/AlGaAs and Si/NiSi or heteroepitaxy of lattice matched but chemically distinct compounds. Here we report that single layers of chemically exfoliated MoS2 consist of electronically dissimilar polymorphs that are lattice matched such that they form chemically homogeneous atomic and electronic heterostructures. High resolution scanning transmission electron microscope (STEM) imaging reveals the coexistence of metallic and semiconducting phases within the chemically homogeneous two-dimensional (2D) MoS2 nanosheets. These results suggest potential for exploiting molecular scale electronic device designs in atomically thin 2D layers.

808 citations


Journal ArticleDOI
TL;DR: Highly bright and efficient inverted structure quantum dot (QD) based light-emitting diodes (QLEDs) by using solution-processed ZnO nanoparticles as the electron injection/transport layer and by optimizing energy levels with the organic hole transport layer are reported.
Abstract: We report highly bright and efficient inverted structure quantum dot (QD) based light-emitting diodes (QLEDs) by using solution-processed ZnO nanoparticles as the electron injection/transport layer and by optimizing energy levels with the organic hole transport layer. We have successfully demonstrated highly bright red, green, and blue QLEDs showing maximum luminances up to 23,040, 218,800, and 2250 cd/m(2), and external quantum efficiencies of 7.3, 5.8, and 1.7%, respectively. It is also noticeable that they showed turn-on voltages as low as the bandgap energy of each QD and long operational lifetime, mainly attributed to the direct exciton recombination within QDs through the inverted device structure. These results signify a remarkable progress in QLEDs and offer a practicable platform for the realization of QD-based full-color displays and lightings.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on a new type of quantum dots, graphene quantum dots (GQDs), and summarize the significant advances achieved by them and other groups in the past few years on both the experimental and theoretical fronts.
Abstract: In this perspective, we focus on a new type of quantum dots, graphene quantum dots (GQDs). Due to quantum confinement and edge effects, GQDs have presented extraordinary properties, attracting extensive attention from scientists in the fields of chemistry, physics, materials, biology, and other interdisciplinary sciences. Herein, we summarize the significant advances achieved by us and other groups in the past few years on both the experimental and theoretical fronts. Synthetic strategies, unique optical and electronic properties, and the promise of GQDs in energy-related devices, such as photovoltaic devices, fuel cells, and light-emitting diodes, are systematically discussed.

Journal ArticleDOI
TL;DR: In this article, greenish-yellow luminescent graphene quantum dots (gGQDs) with a quantum yield up to 11.7% were successfully prepared via cleaving graphene oxide (GO) under acid conditions.
Abstract: With the assistance of microwave irradiation, greenish-yellow luminescent graphene quantum dots (gGQDs) with a quantum yield (QY) up to 11.7% are successfully prepared via cleaving graphene oxide (GO) under acid conditions. The cleaving and reduction processes are accomplished simultaneously using microwave treatment without additional reducing agent. When the gGQDs are further reduced with NaBH4, bright blue luminescent graphene quantum dots (bGQDs) are obtained with a QY as high as 22.9%. Both GQDs show well-known excitation-dependent PL behavior, which could be ascribed to the transition from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) with a carbene-like triplet ground state. Electrochemiluminescence (ECL) is observed from the graphene quantum dots for the first time, suggesting promising applications in ECL biosensing and imaging. The ECL mechanism is investigated in detail. Furthermore, a novel sensor for Cd2+ is proposed based on Cd2+ induced ECL quenching with cysteine (Cys) as the masking agent.

Journal ArticleDOI
TL;DR: Amino-functionalized graphene quantum dots with discrete molecular weights and specific edges were self-limitedly extracted from oxidized graphene sheet and exhibit bright colorful fluorescence under a single-wavelength excitation.
Abstract: Amino-functionalized graphene quantum dots (af-GQDs) with discrete molecular weights and specific edges were self-limitedly extracted from oxidized graphene sheet. Their optical properties can be precisely controlled only by the selective and quantitative functionalization at the edge sites. The af-GQDS exhibit bright colorful fluorescence under a single-wavelength excitation.

Journal ArticleDOI
TL;DR: In this paper, a facile electrochemical method for synthesizing uniform sized graphene quantum dots (GQDs) with a strong yellow emission at 14% quantum yield was presented, which enabled a large-scale production of aqueous GQD solution without the need for polymeric or surfactant stabilizers.
Abstract: We present a facile electrochemical method for synthesizing uniform sized graphene quantum dots (GQDs) with a strong yellow emission at 14% quantum yield. This approach has enabled a large-scale production of aqueous GQD solution without the need for polymeric or surfactant stabilizers. The structure and emission mechanism of the GQDs have been studied by combining extensive characterization techniques, rigorous control experiments and theoretical calculations. We further demonstrate the distinctive advantages of such GQDs for direct and efficient stem cell labeling, opening up great opportunities for their bio-medical applications.

Journal ArticleDOI
TL;DR: Ag(2)S quantum dots (QDs) with bright near-infrared-II fluorescence emission and six-arm branched PEG surface coating were synthesized for in vivo small-animal imaging and afforded a tumor uptake of approximately 10 % injected dose/gram.
Abstract: Hits the dot: Ag(2)S quantum dots (QDs) with bright near-infrared-II fluorescence emission (around 1200 nm) and six-arm branched PEG surface coating were synthesized for in vivo small-animal imaging. The 6PEG-Ag(2)S QDs afforded a tumor uptake of approximately 10 % injected dose/gram, owing to a long circulation half-life of approximately 4 h. Clearance of the injected 6PEG-Ag(2)S QDs occurs mainly through the biliary pathway in mice.

Journal ArticleDOI
TL;DR: A simple solution method is used to prepare emissive hybrid quantum dots consisting of a ZnO core wrapped in a shell of single-layer graphene to make a white-light-emitting diode, and two additional blue emission peaks are observed in the luminescent spectrum of the quantum dot.
Abstract: Quantum dots with a zinc oxide core and a strained graphene shell are used as an emissive layer in a white-light-emitting diode.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a solution-processed semiconductor nanoparticles (quantum dot) for solar cells based on colloidal quantum dots (CQDs) for full-spectrum solar harvesting, which can address the urgent need for low-cost, high-efficiency photovoltaics.
Abstract: Solar cells based on solution-processed semiconductor nanoparticles — colloidal quantum dots — have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

Journal ArticleDOI
TL;DR: In this article, the effect of CdS content on the rate of visible light photocatalytic hydrogen evolution was investigated for different loadings using platinum as a cocatalyst in methanol aqueous solutions.
Abstract: Novel CdS quantum dot (QD)-coupled graphitic carbon nitride (g-C3N4) photocatalysts were synthesized via a chemical impregnation method and characterized by X-ray diffraction, transmission electron microscopy, ultraviolet–visible diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy. The effect of CdS content on the rate of visible light photocatalytic hydrogen evolution was investigated for different CdS loadings using platinum as a cocatalyst in methanol aqueous solutions. The synergistic effect of g-C3N4 and CdS QDs leads to efficient separation of the photogenerated charge carriers and, consequently, enhances the visible light photocatalytic H2 production activity of the materials. The optimal CdS QD content is determined to be 30 wt %, and the corresponding H2 evolution rate was 17.27 μmol·h–1 under visible light irradiation, ∼9 times that of pure g-C3N4. A possible photocatalytic mechanism of the CdS/g-C3N4 comp...

Journal ArticleDOI
27 Apr 2012-ACS Nano
TL;DR: The cytotoxicity study illustrates the Ag(2)S QDs with negligible effects in altering cell proliferation, triggering apoptosis and necrosis, generating reactive oxygen species, and causing DNA damage as well as their high emission efficiency in the unique NIR-II imaging window.
Abstract: Ag2S quantum dots (QDs) emitting in the second near-infrared region (NIR-II, 1.0–1.4 μm) are demonstrated as a promising fluorescent probe with both bright photoluminescence and high biocompatibility for the first time. Highly selective in vitro targeting and imaging of different cell lines are achieved using biocompatible NIR-II Ag2S QDs with different targeting ligands. The cytotoxicity study illustrates the Ag2S QDs with negligible effects in altering cell proliferation, triggering apoptosis and necrosis, generating reactive oxygen species, and causing DNA damage. Our results have opened up the possibilities of using these biocompatible Ag2S QDs for in vivo anatomical imaging and early stage tumor diagnosis with deep tissue penetration, high sensitivity, and elevated spatial and temporal resolution owing to their high emission efficiency in the unique NIR-II imaging window.

Journal Article
TL;DR: It is found that two distinct types of blinking are possible: conventional (A-type) blinking due to charging and discharging of the nanocrystal core, in which lower photoluminescence intensities correlate with shorter photolumscence lifetimes; and a second sort (B-type), in which large changes in the emission intensity are not accompanied by significant changes in emission dynamics.
Abstract: Photoluminescence blinking—random switching between states of high (ON) and low (OFF) emissivities—is a universal property of molecular emitters found in dyes, polymers, biological molecules and artificial nanostructures such as nanocrystal quantum dots, carbon nanotubes and nanowires. For the past 15 years, colloidal nanocrystals have been used as a model system to study this phenomenon. The occurrence of OFF periods in nanocrystal emission has been commonly attributed to the presence of an additional charge, which leads to photoluminescence quenching by non-radiative recombination (the Auger mechanism). However, this ‘charging’ model was recently challenged in several reports. Here we report time-resolved photoluminescence studies of individual nanocrystal quantum dots performed while electrochemically controlling the degree of their charging, with the goal of clarifying the role of charging in blinking. We find that two distinct types of blinking are possible: conventional (A-type) blinking due to charging and discharging of the nanocrystal core, in which lower photoluminescence intensities correlate with shorter photoluminescence lifetimes; and a second sort (B-type), in which large changes in the emission intensity are not accompanied by significant changes in emission dynamics. We attribute B-type blinking to charge fluctuations in the electron-accepting surface sites. When unoccupied, these sites intercept ‘hot’ electrons before they relax into emitting core states. Both blinking mechanisms can be electrochemically controlled and completely suppressed by application of an appropriate potential.

Journal ArticleDOI
Anwei Zhu1, Qiang Qu1, Xiangling Shao1, Biao Kong1, Yang Tian1 
TL;DR: A sensitive biosensor: A strategy for the intracellular imaging of Cu(2+) ions has been developed by integrating a recognition molecule, N-(2-aminoethyl)-N, N,N,N'tris(pyridin-2-ylmethyl)ethane-1,2-diamine (AE-TPEA), into a hybrid system composed of carbon and CdSe/ZnS quantum dots.
Abstract: A sensitive biosensor: A strategy for the intracellular imaging of Cu(2+) ions has been developed by integrating a recognition molecule, N-(2-aminoethyl)-N,N,N'tris(pyridin-2-ylmethyl)ethane-1,2-diamine (AE-TPEA), into a hybrid system composed of carbon and CdSe/ZnS quantum dots.

Journal ArticleDOI
TL;DR: In this paper, a facile, low cost and high yield method has been developed to prepare single and multi-layer graphene quantum dots (GQDs) from XC-72 carbon black by chemical oxidation.
Abstract: A facile, low cost and high yield method has been developed to prepare single- and multi-layer graphene quantum dots (GQDs) from XC-72 carbon black by chemical oxidation. The single-layer GQDs are demonstrated to be excellent probes for cellular imaging, while the multi-layer GQDs may offer great potential applications in optoelectronic devices.

Journal ArticleDOI
TL;DR: A solution chemistry approach to nitrogen-doped colloidal graphene quantum dots with well-defined structures was demonstrated to significantly affect the properties of the quantum dots, including the emergence of size-dependent electrocatalytic activity for the oxygen reduction reaction.
Abstract: Nitrogen doping has been a powerful way to modify the properties of carbon materials ranging from activated carbon to graphene. Here we report on a solution chemistry approach to nitrogen-doped colloidal graphene quantum dots with well-defined structures. N-doping was demonstrated to significantly affect the properties of the quantum dots, including the emergence of size-dependent electrocatalytic activity for the oxygen reduction reaction.

Journal ArticleDOI
15 Aug 2012-ACS Nano
TL;DR: In this paper, size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependences were investigated.
Abstract: For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependences. With varying the average size (da) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at da = ∼17 nm. The PL behaviors can be attributed to the novel feature of GQDs, that is, the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at da = ∼17 nm as the GQD size increases, as demonstrated by high-resolution transmission electron microscopy.

Journal ArticleDOI
TL;DR: In this paper, the effects of quantum confinement on the electronic structure of monolayer transition metal dichalcogenides have been investigated using the Bethe-Salpeter equation.
Abstract: Using $GW$ first-principles calculations for few-layer and bulk MoS${}_{2}$, we study the effects of quantum confinement on the electronic structure of this layered material. By solving the Bethe-Salpeter equation, we also evaluate the exciton energy in these systems. Our results are in excellent agreement with the available experimental data. Exciton binding energy is found to dramatically increase from 0.1 eV in the bulk to 1.1 eV in the monolayer. The fundamental band gap increases as well, so that the optical transition energies remain nearly constant. We also demonstrate that environments with different dielectric constants have a profound effect on the electronic structure of the monolayer. Our results can be used for engineering the electronic properties of MoS${}_{2}$ and other transition-metal dichalcogenides and may explain the experimentally observed variations in the mobility of monolayer MoS${}_{2}$.

Journal ArticleDOI
24 Jul 2012-ACS Nano
TL;DR: It is demonstrated in this work that the micrometer sized graphene oxide (GO) sheets could react with Fenton reagent efficiently under an UV irradiation, and, as a result, the GQDs with periphery carboxylic groups could be generated with mass scale production.
Abstract: Graphene quantum dots (GQDs) are great promising in various applications owing to the quantum confinement and edge effects in addition to their intrinsic properties of graphene, but the preparation of the GQDs in bulk scale is challenging. We demonstrated in this work that the micrometer sized graphene oxide (GO) sheets could react with Fenton reagent (Fe2+/Fe3+/H2O2) efficiently under an UV irradiation, and, as a result, the GQDs with periphery carboxylic groups could be generated with mass scale production. Through a variety of techniques including atomic force microscopy, X-ray photoelectron spectroscopy, gas chromatography, ultraperformance liquid chromatography–mass spectrometry, and total organic carbon measurement, the mechanism of the photo-Fenton reaction of GO was elucidated. The photo-Fenton reaction of GO was initiated at the carbon atoms connected with the oxygen containing groups, and C–C bonds were broken subsequently, therefore, the reaction rate depends strongly on the oxidization extent ...

Journal ArticleDOI
07 Aug 2012-ACS Nano
TL;DR: The electronic band gap and dispersion of the occupied electronic bands of atomically precise graphene nanoribbons fabricated via on-surface synthesis are reported on and are in quantitative agreement with theoretical predictions that include image charge corrections accounting for screening by the metal substrate and confirm the importance of electron-electron interactions in graphene nan oribbons.
Abstract: Some of the most intriguing properties of graphene are predicted for specifically designed nanostructures such as nanoribbons. Functionalities far beyond those known from extended graphene systems include electronic band gap variations related to quantum confinement and edge effects, as well as localized spin-polarized edge states for specific edge geometries. The inability to produce graphene nanostructures with the needed precision, however, has so far hampered the verification of the predicted electronic properties. Here, we report on the electronic band gap and dispersion of the occupied electronic bands of atomically precise graphene nanoribbons fabricated via on-surface synthesis. Angle-resolved photoelectron spectroscopy and scanning tunneling spectroscopy data from armchair graphene nanoribbons of width N = 7 supported on Au(111) reveal a band gap of 2.3 eV, an effective mass of 0.21 m0 at the top of the valence band, and an energy-dependent charge carrier velocity reaching 8.2 × 105 m/s in the li...

Journal ArticleDOI
TL;DR: The power conversion efficiency for liquid junction and solid state quantum dot solar cells, which is in the range of 5-6%, represents a significant advance toward effective utilization of nanomaterials for solar cells.
Abstract: The demand for clean energy will require the design of nanostructure-based light-harvesting assemblies for the conversion of solar energy into chemical energy (solar fuels) and electrical energy (s...

Journal ArticleDOI
TL;DR: QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products.
Abstract: This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials.