scispace - formally typeset
Search or ask a question

Showing papers on "Replicon published in 2014"


Journal ArticleDOI
TL;DR: Two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae are designed and developed.
Abstract: In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S . Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens.

2,834 citations


Journal ArticleDOI
TL;DR: The feasibility of using geminivirus replicons to generate plants with a desired DNA sequence modification is demonstrated and the results advocate the use of replicons for plant genome engineering.
Abstract: Sequence-specific nucleases enable facile editing of higher eukaryotic genomic DNA; however, targeted modification of plant genomes remains challenging due to ineffective methods for delivering reagents for genome engineering to plant cells. Here, we use geminivirus-based replicons for transient expression of sequence-specific nucleases (zinc-finger nucleases, transcription activator-like effector nucleases, and the clustered, regularly interspaced, short palindromic repeat/Cas system) and delivery of DNA repair templates. In tobacco (Nicotiana tabacum), replicons based on the bean yellow dwarf virus enhanced gene targeting frequencies one to two orders of magnitude over conventional Agrobacterium tumefaciens T-DNA. In addition to the nuclease-mediated DNA double-strand breaks, gene targeting was promoted by replication of the repair template and pleiotropic activity of the geminivirus replication initiator proteins. We demonstrate the feasibility of using geminivirus replicons to generate plants with a desired DNA sequence modification. By adopting a general plant transformation method, plantlets with a desired DNA change were regenerated in <6 weeks. These results, in addition to the large host range of geminiviruses, advocate the use of replicons for plant genome engineering.

394 citations


Journal ArticleDOI
TL;DR: The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norov virus capable of replication in cell culture, has improved greatly the understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes.
Abstract: Noroviruses are small, positive-sense RNA viruses within the family Caliciviridae, and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.

230 citations


Journal ArticleDOI
TL;DR: The findings introduce a new evolutionary paradigm where dinucleotide composition of viral genomes is subjected to selection pressures independently of coding capacity and profoundly influences host–pathogen interactions.
Abstract: Most RNA viruses infecting mammals and other vertebrates show profound suppression of CpG and UpA dinucleotide frequencies. To investigate this functionally, mutants of the picornavirus, echovirus 7 (E7), were constructed with altered CpG and UpA compositions in two 1.1-1.3 Kbase regions. Those with increased frequencies of CpG and UpA showed impaired replication kinetics and higher RNA/infectivity ratios compared with wild-type virus. Remarkably, mutants with CpGs and UpAs removed showed enhanced replication, larger plaques and rapidly outcompeted wild-type virus on co-infections. Luciferase-expressing E7 sub-genomic replicons with CpGs and UpAs removed from the reporter gene showed 100-fold greater luminescence. E7 and mutants were equivalently sensitive to exogenously added interferon-β, showed no evidence for differential recognition by ADAR1 or pattern recognition receptors RIG-I, MDA5 or PKR. However, kinase inhibitors roscovitine and C16 partially or entirely reversed the attenuated phenotype of high CpG and UpA mutants, potentially through inhibition of currently uncharacterized pattern recognition receptors that respond to RNA composition. Generating viruses with enhanced replication kinetics has applications in vaccine production and reporter gene construction. More fundamentally, the findings introduce a new evolutionary paradigm where dinucleotide composition of viral genomes is subjected to selection pressures independently of coding capacity and profoundly influences host-pathogen interactions.

168 citations


Journal ArticleDOI
TL;DR: OSBP is a PI 4-kinase effector in HCV infection, and contributes to the integrity and cholesterol enrichment of the membranous web, and could be involved in replication of other viruses that require PI4-kinases.

150 citations


Journal ArticleDOI
TL;DR: This work resulted in the construction of an improved broad-host-range replicon derived from RSF1010, which replicates in several phylogenetically distinct strains including a new experimental model strain Synechocystis sp.
Abstract: Inspired by the developments of synthetic biology and the need for improved genetic tools to exploit cyanobacteria for the production of renewable bioproducts, we developed a versatile platform for the construction of broad-host-range vector systems. This platform includes the following features: (i) an efficient assembly strategy in which modules released from 3 to 4 donor plasmids or produced by polymerase chain reaction are assembled by isothermal assembly guided by short GC-rich overlap sequences. (ii) A growing library of molecular devices categorized in three major groups: (a) replication and chromosomal integration; (b) antibiotic resistance; (c) functional modules. These modules can be assembled in different combinations to construct a variety of autonomously replicating plasmids and suicide plasmids for gene knockout and knockin. (iii) A web service, the CYANO-VECTOR assembly portal, which was built to organize the various modules, facilitate the in silico construction of plasmids, and encourage the use of this system. This work also resulted in the construction of an improved broad-host-range replicon derived from RSF1010, which replicates in several phylogenetically distinct strains including a new experimental model strain Synechocystis sp. WHSyn, and the characterization of nine antibiotic cassettes, four reporter genes, four promoters, and a ribozyme-based insulator in several diverse cyanobacterial strains.

140 citations


Journal ArticleDOI
TL;DR: The subject of this review is the ∼200-kb Ti plasmids carried by infectious strains of A. tumefaciens, a representative of the repABC family of megaplasmids, which have potential for use in future therapeutic applications of plant and nonplant species.
Abstract: Agrobacterium tumefaciens is a plant pathogen with the capacity to deliver a segment of oncogenic DNA carried on a large plasmid called the tumor-inducing or Ti plasmid to susceptible plant cells. A. tumefaciens belongs to the class Alphaproteobacteria, whose members include other plant pathogens (Agrobacterium rhizogenes), plant and insect symbionts (Rhizobium spp. and Wolbachia spp., respectively), human pathogens (Brucella spp., Bartonella spp., Rickettsia spp.), and nonpathogens (Caulobacter crescentus, Rhodobacter sphaeroides). Many species of Alphaproteobacteria carry large plasmids ranging in size from ∼100 kb to nearly 2 Mb. These large replicons typically code for functions essential for cell physiology, pathogenesis, or symbiosis. Most of these elements rely on a conserved gene cassette termed repABC for replication and partitioning, and maintenance at only one or a few copies per cell ( 1 ). The subject of this review is the ∼200-kb Ti plasmids carried by infectious strains of A. tumefaciens. We will summarize the features of this plasmid as a representative of the repABC family of megaplasmids. We will also describe novel features of this plasmid that enable A. tumefaciens cells to incite tumor formation in plants, sense and respond to an array of plant host and bacterial signal molecules, and maintain and disseminate the plasmid among populations of agrobacteria. At the end of this review, we will describe how this natural genetic engineer has been adapted to spawn an entire industry of plant biotechnology and review its potential for use in future therapeutic applications of plant and nonplant species.

93 citations


Journal ArticleDOI
TL;DR: The results support AQ as a promising candidate for anti-flaviviral therapy and both p-hydroxyanilino and diethylaminomethyl moieties are important for AQ to inhibit DENV2 replication and infectivity.

92 citations


Journal ArticleDOI
03 Mar 2014-PLOS ONE
TL;DR: A new biological system addressing both the above mentioned problems in which the transfer helper functions are provided by a plasmid lacking a functional oriT is reported, compatible with all other replicons commonly used in conjugation experiments and further enables the use of diverse bacterial strains as donors.
Abstract: Bacterial conjugation is a process that is mediated either by a direct cell-to-cell junction or by formation of a bridge between the cells. It is often used to transfer DNA constructs designed in Escherichia coli to recipient bacteria, yeast, plants and mammalian cells. Plasmids bearing the RK2/RP4 origin of transfer (oriT) are mostly mobilized using the E. coli S17-1/SM10 donor strains, in which transfer helper functions are provided from a chromosomally integrated RP4::Mu. We have observed that large plasmids were occasionally modified after conjugal transfer when using E. coli S17-1 as a donor. All modified plasmids had increased in size, which most probably was a result of co-transfer of DNA from the chromosomally located oriT. It has earlier also been demonstrated that the bacteriophage Mu is silently transferred to recipient cells by these donor strains, and both occurrences are very likely to lead to mutations within the recipient DNA. Here we report the construction of a new biological system addressing both the above mentioned problems in which the transfer helper functions are provided by a plasmid lacking a functional oriT. This system is compatible with all other replicons commonly used in conjugation experiments and further enables the use of diverse bacterial strains as donors. Plasmids containing large inserts were successfully conjugated and the plasmid modifications observed when E. coli S17-1 was used as donor were eliminated by the use of the new host-independent vector system.

76 citations


Journal ArticleDOI
TL;DR: The results showed a surprisingly high prevalence of fosA3 gene in E. coli isolates recovered from chicken in China, which can be attributed to horizontal dissemination of several epidemic plasmids, especially F33:A-:B- plasmid.
Abstract: The purpose of this study was to examine the occurrence of fosfomycin-resistant Escherichia coli from chickens and to characterize the plasmids carrying fosA3. A total of 661 E. coli isolates of chicken origin collected from 2009 to 2011 were screened for plasmid-mediated fosfomycin resistance determinants by PCR. Plasmids were characterized using PCR-based replicon typing, plasmid multilocus sequence typing, and restriction fragment length polymorphisms. Associated addiction systems and resistance genes were identified by PCR. PCR-mapping was used for analysis of the genetic context of fosA3. Fosfomycin resistance was detected in 58 isolates that also carried the fosA3 gene. Fifty-seven, 17, and 52 FosA3-producers also harbored blaCTX-M, rmtB, and floR genes, respectively. Most of the 58 fosA3-carrying isolates were clonally unrelated, and all fosA3 genes were located on plasmids belonged to F33:A-:B- (n=18), IncN-F33:A-:B- (n=7), IncHI2/ST3 (n=10), IncI1/ST71 (n=3), IncI1/ST108 (n=3), and others. The genetic structures, IS26-ISEcp1-blaCTX-M-55-orf477-blaTEM-1-IS26-fosA3-1758bp-IS26 and ISEcp1-blaCTX-M-65- IS903-iroN-IS26-fosA3-536bp-IS26 were located on highly similar F33:A-:B- plasmids. In addition, blaCTX-M-14-fosA3-IS26 was frequently present on similar IncHI2/ST3 plasmids. IncFII plasmids had a significantly higher frequency of addiction systems (mean 3.5) than other plasmids. Our results showed a surprisingly high prevalence of fosA3 gene in E. coli isolates recovered from chicken in China. The spread of fosA3 can be attributed to horizontal dissemination of several epidemic plasmids, especially F33:A-:B- plasmids. Since coselection by other antimicrobials is the major driving force for the diffusion of the fosA3 gene, a strict antibiotic use policy is urgently needed in China.

74 citations


Journal ArticleDOI
TL;DR: Replication fitness and sensitivity of various HCV replicons, containing or lacking NS2, to cyclosporine and other direct-acting antiviral agents are determined andCleavage at the NS2/3 junction is a rate-limiting step in replication of particular HCV isolates and determines their sensitivity to CypA inhibitors.

Journal ArticleDOI
TL;DR: Differences in cross-species transferability of the two plasmids can be explained by genetic differences between their backbones and could have resulted in the confined bla(KPC-2)-carrying CR-KP outbreak in Taiwan.
Abstract: Results: The CR-EC and CR-KP strains in this study were determined to be ST410 and ST11, respectively, by MLST. From CR-EC, we identified a 145 kb conjugative plasmid that carries blaKPC-2, blaCMY-2, blaCTX-M-3 and blaTEM-1. The plasmid is a chimera composed of three regions related to IncI, IncN and RepFIC replicons. From CR-KP, we identified an 86.5 kb plasmid, pKPC-LK30, which carriesblaKPC-2 andblaSHV-11. The plasmid is very similar to twoblaKPC-2carrying IncFIIK plasmids, but lacks one of the replication origins and cannot conjugate. Conclusions: The differences in cross-species transferability of the two plasmids can be explained by genetic differences between their backbones and could have resulted in the confinedblaKPC-2-carrying CR-KP outbreak in Taiwan. Plasmid pKPC-LKEc is the firstblaKPC-2-carrying plasmid identified from CR-EC in Taiwan. With relatively high transferability it should be closely monitored.

Journal ArticleDOI
TL;DR: A robust method to express and purify dengue virus (DENV) and West Nile virus NS4B proteins and indicates that trans-complementation of a lethal NS 4B mutant RNA requires wild-type NS4 B presented from a replication complex, which enhances the understanding ofNS4B in flavivirus replication.
Abstract: Flavivirus replication is mediated by a complex machinery that consists of viral enzymes, nonenzymatic viral proteins, and host factors. Many of the nonenzymatic viral proteins, such as NS4B, are associated with the endoplasmic reticulum membrane. How these membrane proteins function in viral replication is poorly understood. Here we report a robust method to express and purify dengue virus (DENV) and West Nile virus NS4B proteins. The NS4B proteins were expressed in Escherichia coli, reconstituted in dodecyl maltoside (DDM) detergent micelles, and purified to >95% homogeneity. The recombinant NS4B proteins dimerized in vitro, as evidenced by gel filtration, chemical cross-linking, and multiangle light scattering experiments. The dimeric form of NS4B was also detected when the protein was expressed alone in cells as well as in cells infected with DENV type 2 (DENV-2). Mutagenesis analysis showed that the cytosolic loop (amino acids 129 to 165) and the C-terminal region (amino acids 166 to 248) are responsible for NS4B dimerization. trans-Complementation experiments showed that (i) two genome-length RNAs containing distinct NS4B lethal mutations could not trans-complement each other, (ii) the replication defect of NS4B mutant RNA could be restored in cells containing DENV-2 replicons, and (iii) expression of wild-type NS4B protein alone was not sufficient to restore the replication of the NS4B mutant RNA. Collectively, the results indicate that trans-complementation of a lethal NS4B mutant RNA requires wild-type NS4B presented from a replication complex. IMPORTANCE The reported expression and purification system has made it possible to study the biochemistry and structure offlavivirus NS4B proteins. Thefinding offlavivirus NS4B dimerization and the mapping of regions important for NS4B dimerization provide the possibility to inhibit viral replication through blocking NS4B dimerization. The requirement of NS4B in the context of the replication complex for successful trans-complementation enhances our understanding of NS4B inflavivirus replication.

Journal ArticleDOI
TL;DR: This study provides an innovative approach for producing a cccDNA surrogate that established HBV persistence with sustained liver injury in immunocompetent mice and could be a prototype for developing a mouse model of chronic HBV infection.
Abstract: It remains crucial to develop a laboratory model for studying hepatitis B virus (HBV) chronic infection. We hereby produced a recombinant covalently closed circular DNA (rcccDNA) in view of the key role of cccDNA in HBV persistence. A loxP-chimeric intron was engineered into a monomeric HBV genome in a precursor plasmid (prcccDNA), which was excised using Cre/loxP-mediated DNA recombination into a 3.3-kb rcccDNA in the nuclei of hepatocytes. The chimeric intron was spliced from RNA transcripts without interrupting the HBV life cycle. In cultured hepatoma cells, cotransfection of prcccDNA and pCMV-Cre (encoding Cre recombinase) resulted in accumulation of nuclear rcccDNA that was heat stable and epigenetically organized as a minichromosome. A mouse model of HBV infection was developed by hydrodynamic injection of prcccDNA. In the presence of Cre recombinase, rcccDNA was induced in the mouse liver with effective viral replication and expression, triggering a compromised T-cell response against HBV. Significant T-cell hyporesponsiveness occurred in mice receiving 4 μg prcccDNA, resulting in prolonged HBV antigenemia for up to 9 weeks. Persistent liver injury was observed as elevated alanine transaminase activity in serum and sustained inflammatory infiltration in the liver. Although a T-cell dysfunction was induced similarly, mice injected with a plasmid containing a linear HBV replicon showed rapid viral clearance within 2 weeks. Collectively, our study provides an innovative approach for producing a cccDNA surrogate that established HBV persistence in immunocompetent mice. It also represents a useful model system in vitro and in vivo for evaluating antiviral treatments against HBV cccDNA. IMPORTANCE (i) Unlike plasmids that contain a linear HBV replicon, rcccDNA established HBV persistence with sustained liver injury in immunocompetent mice. This method could be a prototype for developing a mouse model of chronic HBV infection. (ii) An exogenous intron was engineered into the HBV genome for functionally seamless DNA recombination. This original approach could be also extended to other viral studies. (iii) rcccDNA was substantially induced in the nuclei of hepatocytes and could be easily distinguished by its exogenous intron using PCR. This convenient model system affords the opportunity to test antivirals directly targeting HBV cccDNA.

Journal ArticleDOI
TL;DR: The concept of self-amplifying RNA vaccines and the most promising lipid-based delivery systems are discussed and they are shown to be potent in several animal species, including mice, nonhuman primates, and humans.
Abstract: Self-amplifying RNA or RNA replicon is a form of nucleic acid-based vaccine derived from either positive-strand or negative-strand RNA viruses. The gene sequences encoding structural proteins in these RNA viruses are replaced by mRNA encoding antigens of interest as well as by RNA polymerase for replication and transcription. This kind of vaccine has been successfully assayed with many different antigens as vaccines candidates, and has been shown to be potent in several animal species, including mice, nonhuman primates, and humans. A key challenge to realizing the broad potential of self-amplifying vaccines is the need for safe and effective delivery methods. Ideally, an RNA nanocarrier should provide protection from blood nucleases and extended blood circulation, which ultimately would increase the possibility of reaching the target tissue. The delivery system must then be internalized by the target cell and, upon receptor-mediated endocytosis, must be able to escape from the endosomal compartment into the cell cytoplasm, where the RNA machinery is located, while avoiding degradation by lysosomal enzymes. Further, delivery systems for systemic administration ought to be well tolerated upon administration. They should be safe, enabling the multiadministration treatment modalities required for improved clinical outcomes and, from a developmental point of view, production of large batches with reproducible specifications is also desirable. In this review, the concept of self-amplifying RNA vaccines and the most promising lipid-based delivery systems are discussed.

Journal ArticleDOI
TL;DR: The in vitro data suggest that DCV has the potential to be an effective agent for HCV genotypes 1 to 6 when used in combination therapy.
Abstract: A comparison of the daclatasvir (DCV [BMS-790052]) resistance barrier on authentic or hybrid replicons containing NS5A from hepatitis C virus (HCV) genotypes 1 to 6 (GT-1 to -6) was completed using a replicon elimination assay. The data indicated that genotype 1b (GT-1b) has the highest relative resistance barrier and genotype 2a (GT-2a M31) has the lowest. The rank order of resistance barriers to DCV was 1b > 4a ≥ 5a > 6a ≅ 1a > 2a JFH > 3a > 2a M31. Importantly, DCV in combination with a protease inhibitor (PI) eliminated GT-2a M31 replicon RNA at a clinically relevant concentration. Previously, we reported the antiviral activity and resistance profiles of DCV on HCV genotypes 1 to 4 evaluated in the replicon system. Here, we report the antiviral activity and resistance profiles of DCV against hybrid replicons with NS5A sequences derived from HCV GT-5a and GT-6a clinical isolates. DCV was effective against both GT-5a and -6a hybrid replicon cell lines (50% effective concentrations [EC 50 s] ranging from 3 to 7 pM for GT-5a, and 74 pM for GT-6a). Resistance selection identified amino acid substitutions in the N-terminal domain of NS5A. For GT-5a, L31F and L31V, alone or in combination with K56R, were the major resistance variants (EC 50 s ranging from 2 to 40 nM). In GT-6a, Q24H, L31M, P32L/S, and T58A/S were identified as resistance variants (EC 50 s ranging from 2 to 250 nM). The in vitro data suggest that DCV has the potential to be an effective agent for HCV genotypes 1 to 6 when used in combination therapy.

Journal ArticleDOI
TL;DR: An effective small-molecule inhibitor is identified, BP13944, which likely targets the DENV NS3 protease, and could be considered part of a more effective treatment regime for inhibiting DENV in the future.
Abstract: Dengue virus (DENV) causes disease globally, resulting in an estimated 25 to 100 million new infections per year. No effective DENV vaccine is available, and the current treatment is only supportive. Thus, there is an urgent need to develop therapeutic agents to cure this epidemic disease. In the present study, we identified a potential small-molecule inhibitor, BP13944, via high-throughput screening (HTS) of 60,000 compounds using a stable cell line harboring an efficient luciferase replicon of DENV serotype 2 (DENV-2). BP13944 reduced the expression of the DENV replicon reporter in cells, showing a 50% effective concentration (EC50) of 1.03 ± 0.09 μM. Without detectable cytotoxicity, the compound inhibited replication or viral RNA synthesis in all four serotypes of DENV but not in Japanese encephalitis virus (JEV). Sequencing analyses of several individual clones derived from BP13944-resistant RNAs purified from cells harboring the DENV-2 replicon revealed a consensus amino acid substitution (E66G) in the region of the NS3 protease domain. Introduction of E66G into the DENV replicon, an infectious DENV cDNA clone, and recombinant NS2B/NS3 protease constructs conferred 15.2-, 17.2-, and 3.1-fold resistance to BP13944, respectively. Our results identify an effective small-molecule inhibitor, BP13944, which likely targets the DENV NS3 protease. BP13944 could be considered part of a more effective treatment regime for inhibiting DENV in the future.

Journal ArticleDOI
Yi Liu1, Haibin Liu1, Jing Zou1, Bo Zhang1, Zhiming Yuan1 
05 Jan 2014-Virology
TL;DR: Results from cytotoxicity and apoptosis assay revealed that the generation of subgenomic RNA is significant for DENV-2 viral cytopathicity and virus-induced apoptosis; and the deficiency could be partially restored by providing sub genomic RNA in trans from transfection.

Journal ArticleDOI
10 Mar 2014-PLOS ONE
TL;DR: Three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus, which secreted the target protein NucA with varying production levels and secretion efficiencies.
Abstract: We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species.

Journal ArticleDOI
TL;DR: This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols, including adenoviral vectors, protein transduction, RNA transfection, and repeated transfections of plasmids.
Abstract: Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols.

Journal ArticleDOI
TL;DR: The study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication.
Abstract: Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.

Journal ArticleDOI
09 May 2014-PLOS ONE
TL;DR: CMY-2 is the dominant AmpC β-lactamase in food animals and is associated with a transferable replicon IncA/C plasmid in the STC101, STC10, and STC155 strains.
Abstract: Objectives To obtain a broad molecular epidemiological characterization of plasmid-mediated AmpC β-lactamase CMY-2 in Escherichia coli isolates from food animals in China. Methods A total of 1083 E. coli isolates from feces, viscera, blood, drinking water, and sub-surface soil were examined for the presence of CMY-2 β-lactamases. CMY-2-producing isolates were characterized as follows: the blaCMY-2 genotype was determined using PCR and sequencing, characterization of the blaCMY-2 genetic environment, plasmid sizing using S1 nuclease pulsed-field gel electrophoresis (PFGE), PCR-based replicon typing, phylogenetic grouping, XbaI-PFGE, and multi-locus sequence typing (MLST). Results All 31 CMY-2 producers were only detected in feces, and presented with multidrug resistant phenotypes. All CMY-2 strains also co-harbored genes conferring resistance to other antimicrobials, including extended spectrum β-lactamases genes (blaCTX-M-14 or blaCTX-M-55), plasmid-mediated quinolone resistance determinants (qnr, oqxA, and aac-(6′)-Ib-cr), floR and rmtB. The co-transferring of blaCMY-2 with qnrS1 and floR (alone and together) was mainly driven by the Inc A/C type plasmid, with sizes of 160 or 200 kb. Gene cassette arrays inserted in the class 1 or class 2 integron were amplified among 12 CMY-2 producers. CMY-2 producers belonged to avirulent groups B1 (n = 12) and A (n = 11), and virulent group D (n = 8). There was a good correlation between phylogenetic groups and sequence types (ST). Twenty-four STs were identified, of which the ST complexes (STC) 101/B1 (n = 6), STC10/A (n = 5), and STC155/B1 (n = 3) were dominant. Conclusions CMY-2 is the dominant AmpC β-lactamase in food animals and is associated with a transferable replicon IncA/C plasmid in the STC101, STC10, and STC155 strains.

Journal ArticleDOI
TL;DR: The results indicate an unforeseen heterogeneity of plasmid backgrounds and suggest limited exchange between the two populations, in which blaCMY-2 occurred at very different frequencies and was harboured by distinct plasmids types.
Abstract: OBJECTIVES To determine the population structure and genetic relatedness of plasmids encoding CMY-2 β-lactamase in clinical Escherichia coli from humans and companion animals within a defined geographical area. METHODS In total, 42 human and 73 companion animal isolates displaying an AmpC phenotype were isolated at a regional diagnostic reference laboratory in the upper Midwestern USA during 2009-11. Following PCR screening for transferable AmpC genes and plasmid transformation, blaCMY-2-positive plasmids were characterized by S1 nuclease PFGE, PCR-based replicon typing, antimicrobial susceptibility testing of transformants, conjugation experiments, plasmid multilocus sequence typing and restriction fragment length polymorphism. RESULTS blaCMY-2 occurred in 6 (14%), 56 (86%) and 6 (75%) isolates from humans, dogs and cats, respectively. Usually plasmids carrying blaCMY-2 were conjugative (78%) and did not contain additional resistance genes (82%). The replicon types were IncI1 (52%), IncA/C (13%), IncFII (10%), IncI2 (5%), IncL/M (3%), IncB/O (2%) or non-typeable (15%). Related IncI1/ST12 plasmids were detected in one human and five canine isolates, while the remaining plasmids did not show similarity across host species. A novel epidemiological linkage of blaCMY-2 with IncL/M plasmids and a new CMY gene variant (blaCMY-108) were found in human isolates. CONCLUSIONS This study is one of the first One Health attempts to compare plasmids encoding CMY-2 β-lactamase among clinical isolates from humans and companion animals in the same region. The results indicate an unforeseen heterogeneity of plasmid backgrounds and suggest limited exchange between the two populations, in which blaCMY-2 occurred at very different frequencies and was harboured by distinct plasmid types.

Journal ArticleDOI
TL;DR: The synthesis, optimization, and structure-activity relationships associated with inhibition of HCV replication in a subgenomic replication system for a series of non-nucleoside boron-containing HCV RNA-dependent RNA polymerase (NS5B) inhibitors are described.
Abstract: A boronic acid moiety was found to be a critical pharmacophore for enhanced in vitro potency against wild-type hepatitis C replicons and known clinical polymorphic and resistant HCV mutant replicons. The synthesis, optimization, and structure–activity relationships associated with inhibition of HCV replication in a subgenomic replication system for a series of non-nucleoside boron-containing HCV RNA-dependent RNA polymerase (NS5B) inhibitors are described. A summary of the discovery of 3 (GSK5852), a molecule which entered clinical trials in subjects infected with HCV in 2011, is included.

Journal ArticleDOI
TL;DR: A set of multiplex PCRs showed high sensitivity and specificity for the classification of resistance plasmids and has proved complementary to the widely used PBRT and will improve the monitoring of plasmid distribution in every-day practice.

Journal ArticleDOI
TL;DR: In this paper, a total of 67 E. coli isolates carrying plasmids encoding CMY-2 were characterised by clonal analysis and phylogenetic typing, and the plasmid transfer plays a major role in the spread of blaCMY2.

Journal ArticleDOI
TL;DR: It was found that the IncX4 plasmids had little effect on bacterial host growth parameters after their introduction to J53 recipients, highlighting the ability of this plasmid replicon to be an important vehicle for dissemination of antimicrobial resistance.
Abstract: This study investigated the prevalence of IncX plasmid subtypes in commensal and pathogenic Escherichia coli isolates and the biological features of the IncX4 subtype. Two hundred and twenty-five E. coli isolates from multiple sources (47 chickens, 41 pigs, 30 cattle and 107 humans) obtained during the period 2006–2012 were tested for the presence of IncX1 to IncX5. Overall, the prevalence of IncX plasmids in chicken, pig, cattle and human isolates were 21.2 % (10/47), 19.5 % (8/41), 3.3 % (1/30) and 4.8 % (5/107), respectively. IncX4 was the most common subtype, followed by IncX1 and IncX3, while no IncX2 or IncX5 were found. Seven out of 16 (43.8 %) IncX4 plasmids were found to carry bla CTX-M genes and six of them originating from different host sources (four chickens, one pig and one human) had identical or highly similar RFLP patterns. Three IncX4 plasmids carrying bla CTX-M from different host sources were investigated further. It was found that the IncX4 plasmids had little effect on bacterial host growth parameters after their introduction to J53 recipients. Conjugation experiments demonstrated that the IncX4 plasmids could be efficiently transferred at 30–42 °C at rates which were generally 102–105-fold higher than those for the epidemic IncFII plasmid carrying bla CTX-M (pHK01). In conclusion, the IncX plasmids are more common than previously recognized. The efficient transfer of IncX4 plasmid at different temperatures and the lack of fitness burden on bacterial hosts highlight the ability of this plasmid replicon to be an important vehicle for dissemination of antimicrobial resistance.

Journal ArticleDOI
TL;DR: This study identifies plasmid lineages that are contributing to the dissemination of blaCTX-M-1 genes in the food chain, the environment, and humans.
Abstract: Objectives: The aim of this work was to determine the plasmid replicon profiles of a collection of blaCTX-M-1-positive enterobacterial strains The isolates originated from chicken in the production pyramid, healthy food-producing animals at slaughter (chicken, calves and pigs), chicken retail meat, environmental isolates originating from water bodies, and isolates from humans A selection of IncI and IncN plasmids were characterized by multilocus sequence typing in order to determine their epidemiological relatedness Methods: Transconjugants of 74 blaCTX-M-1-positive isolates were analysed by PCR-based replicon typing and by PCR-based plasmid multilocus sequence typing Results: The incompatibility groups detected among the blaCTX-M-1-harboring plasmids included IncI1, IncN, IncHI1B, IncF, IncFIIS, IncFIB and IncB/O, with plasmid lineage IncI1/ST3 predominating in isolates from chicken and from humans Lineage IncN/ST1 was detected mainly in isolates from pigs For the first time, blaCTX-M-1 genes encoded on IncHI1 plasmids were detected in isolates from cattle and from water bodies Conclusions: This study identifies plasmid lineages that are contributing to the dissemination of blaCTX-M-1 genes in the food chain, the environment, and humans

Journal ArticleDOI
TL;DR: 6-Azauridine, 2′-C-methylcytidine, and interferon alpha 2a (IFN-α2a) inhibited the replication of AHFV and also KFDV, OHFV, and Powassan virus, and the antiviral activity of 6-azaU was reduced by the addition of cytidine but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis.
Abstract: No antiviral therapies are available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). We tested compounds reported to have antiviral activity against members of the Flaviviridae family for their ability to inhibit AHFV replication. 6-Azauridine (6-azaU), 2′-C-methylcytidine (2′-CMC), and interferon alpha 2a (IFN-α2a) inhibited the replication of AHFV and also KFDV, OHFV, and Powassan virus. The combination of IFN-α2a and 2′-CMC exerted an additive antiviral effect on AHFV, and the combination of IFN-α2a and 6-azaU was moderately synergistic. The combination of 2′-CMC and 6-azaU was complex, being strongly synergistic but with a moderate level of antagonism. The antiviral activity of 6-azaU was reduced by the addition of cytidine but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis. To investigate the mechanism of action of 2′-CMC, AHFV variants with reduced susceptibility to 2′-CMC were selected. We used a replicon system to assess the substitutions present in the selected AHFV population. A double NS5 mutant, S603T/C666S, and a triple mutant, S603T/C666S/M644V, were more resistant to 2′-CMC than the wild-type replicon. The S603T/C666S mutant had a reduced level of replication which was increased when M644V was also present, although the replication of this triple mutant was still below that of the wild type. The S603 and C666 residues were predicted to lie in the active site of the AHFV NS5 polymerase, implicating the catalytic center of the enzyme as the binding site for 2′-CMC.

Journal ArticleDOI
TL;DR: In vivo virulence assay in mice showed that the recombinant virus containing double mutations showed similar virulence to the WT SA14 (GenBank accession no. M55506), the first chemically synthesized JEV.
Abstract: A full-length genome infectious clone is a powerful tool for functional assays in virology. In this study, using a chemical synthesized complete genome of Japanese encephalitis virus (JEV) strain SA14 (GenBank accession no. U14163), we constructed a full-length genomic cDNA clone of JEV. The recovered virus from the cDNA clone replicated poorly in baby hamster kidney (BHK-21) cells and in suckling mice brain. Following serial passage in BHK-21 cells, adaptive mutations within the NS2B and NS4A proteins were recovered in the passaged viruses leading to viruses with a large-plaque phenotype. Mutagenesis analysis, using a genome-length RNA and a replicon of JEV, demonstrated that the adaptive mutations restored replication to different degrees, and the restoration efficiencies were in the order: NS2B-T102M