scispace - formally typeset
Search or ask a question

Showing papers on "Spin states published in 2018"


Journal ArticleDOI
14 Feb 2018-Nature
TL;DR: Strong coupling between a single spin in silicon and a single microwave-frequency photon, with spin–photon coupling rates of more than 10 megahertz is demonstrated, which opens up a direct path to entangling single spins using microwave- frequencies.
Abstract: Electron spins in silicon quantum dots are attractive systems for quantum computing owing to their long coherence times and the promise of rapid scaling of the number of dots in a system using semiconductor fabrication techniques. Although nearest-neighbour exchange coupling of two spins has been demonstrated, the interaction of spins via microwave-frequency photons could enable long-distance spin–spin coupling and connections between arbitrary pairs of qubits (‘all-to-all’ connectivity) in a spin-based quantum processor. Realizing coherent spin–photon coupling is challenging because of the small magnetic-dipole moment of a single spin, which limits magnetic-dipole coupling rates to less than 1 kilohertz. Here we demonstrate strong coupling between a single spin in silicon and a single microwave-frequency photon, with spin–photon coupling rates of more than 10 megahertz. The mechanism that enables the coherent spin–photon interactions is based on spin–charge hybridization in the presence of a magnetic-field gradient. In addition to spin–photon coupling, we demonstrate coherent control and dispersive readout of a single spin. These results open up a direct path to entangling single spins using microwave-frequency photons. A single spin in silicon is strongly coupled to a microwave-frequency photon and coherent single-spin dynamics are observed using circuit quantum electrodynamics. Solid-state spins are promising qubits for quantum information processing thanks to their long coherence times, but harnessing spin–spin interactions is still a challenge. Spin–spin coupling is currently based on the exchange interaction and the weaker dipole–dipole interaction. Strong spin–photon coupling, achieved through coherent spin–photon interactions, could enable long-distance spin entanglement mediated by microwave photons. Here, Jason Petta and colleagues demonstrate a spin–photon interface where a single electron spin in a silicon double quantum dot is strongly coupled to a photon trapped in a microwave cavity. The technique, which relies on spin–charge hybridization in the presence of an inhomogeneous magnetic field, generates spin–photon coupling rates that ensure the coherence of the interface. The authors demonstrate all-electric control of the spin–photon coupling, as well as coherent manipulation of the spin state and dispersive readout of the single electron spin. These results suggest that a spin-based quantum processor might be one step closer.

414 citations


Journal ArticleDOI
TL;DR: Spin–vibration coupling has been proven to be crucial for spin dynamics; theoretical studies are now addressing this experimental challenge.
Abstract: Very recently the closely related fields of molecular spin qubits, single ion magnets and single atom magnets have been shaken by unexpected results. We have witnessed a jump in the phase memory times of spin qubits from a few microseconds to almost a millisecond in a vanadium complex, magnetic hysteresis up to 60 K in a dysprosium-based magnetic molecule and magnetic memory up to 30 K in a holmium atom deposited on a surface. With single-molecule magnets being more than two decades old, this rapid improvement in the physical properties is surprising and its explanation deserves urgent attention. The general assumption of focusing uniquely on the energy barrier is clearly insufficient to model magnetic relaxation. Other factors, such as vibrations that couple to spin states, need to be taken into account. In fact, this coupling is currently recognised to be the key factor that accounts for the slow relaxation of magnetisation at higher temperatures. Herein we will present a critical perspective of the recent advances in molecular nanomagnetism towards the goal of integrating spin-phonon interactions into the current computational methodologies of spin relaxation. This presentation will be placed in the context of the well-known models developed in solid state physics, which, as we will explain, are severely limited for molecular systems.

182 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the emergence of a Bloch-type skyrmion state in the frustrated centrosymmetric triangular-lattice magnet Gd2PdSi3.
Abstract: Geometrically frustrated magnets provide abundant opportunities for discovering complex spin textures, which sometimes yield unconventional electromagnetic responses in correlated electron systems. It is theoretically predicted that magnetic frustration may also promote a topologically nontrivial spin state, i.e., magnetic skyrmions, which are nanometric spin vortices. Empirically, however, skyrmions are essentially concomitant with noncentrosymmetric lattice structures or interfacial-symmetry-breaking heterostructures. Here, we report the emergence of a Bloch-type skyrmion state in the frustrated centrosymmetric triangular-lattice magnet Gd2PdSi3. We identified the field-induced skyrmion phase via a giant topological Hall response, which is further corroborated by the observation of in-plane spin modulation probed by resonant x-ray scattering. Our results exemplify a new gold mine of magnetic frustration for producing topological spin textures endowed with emergent electrodynamics in centrosymmetric magnets.

171 citations


Journal ArticleDOI
TL;DR: By controlling the spin states of nitrogen vacancy color centers in diamond, this work reports the observation of critical thermalization in a three dimensional ensemble of ∼10^{6} electronic spins coupled via dipolar interactions and identifies a regime of power-law decay with disorder-dependent exponents.
Abstract: Statistical mechanics underlies our understanding of macroscopic quantum systems. It is based on the assumption that out-of-equilibrium systems rapidly approach their equilibrium states, forgetting any information about their microscopic initial conditions. This fundamental paradigm is challenged by disordered systems, in which a slowdown or even absence of thermalization is expected. We report the observation of critical thermalization in a three dimensional ensemble of ∼10^{6} electronic spins coupled via dipolar interactions. By controlling the spin states of nitrogen vacancy color centers in diamond, we observe slow, subexponential relaxation dynamics and identify a regime of power-law decay with disorder-dependent exponents; this behavior is modified at late times owing to many-body interactions. These observations are quantitatively explained by a resonance counting theory that incorporates the effects of both disorder and interactions.

159 citations


Journal ArticleDOI
TL;DR: Investigation of the emission properties of the complexes with regard to temperature shows that the spin crossover can be tracked by monitoring the emission spectra, since the emission color changes from greenish to a yellow color upon the low spin-to-high spin transition.
Abstract: A spin-crossover coordination polymer [Fe(L1)(bipy)]n (where L = a N2O22– coordinating Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4′-bipyridine) was synthesized and exhibits a 48 K wide thermal hysteresis above room temperature (T1/2↑ = 371 K and T1/2↓ = 323 K) that is stable for several cycles. The spin transition was characterized using magnetic measurements, Mossbauer spectroscopy, and DSC measurements. T-dependent X-ray powder diffraction reveals a structural phase transition coupled with the spin transition phenomenon. The dimeric excerpt {(μ-bipy)[FeL1(MeOH)]2}·2MeOH of the coordination polymer chain crystallizes in the triclinic space group P1 and reveals that the packing of the molecules in the crystal is dominated by hydrogen bonds. Investigation of the emission properties of the complexes with regard to temperature shows that the spin crossover can be tracked by monitoring the emission spectra, since the emission color changes from greenish to a yellow color upon the l...

154 citations


Journal ArticleDOI
TL;DR: This work builds for the first time a substantial magnetic phase diagram under lateral strain and charge doping, the two factors that are easily modulated in single-layer CrI3via substrate and gating controls, and finds that the phase transition under compressive strain is insensitive to Charge doping, whereas the phase Transition under tensile strain is modulated by electron doping significantly.
Abstract: The recent discovery of ferromagnetic single-layer CrI3 creates ample opportunities for studying the fundamental properties and the spintronic applications of atomically thin magnets. Through first-principles calculations and model Hamiltonian simulations, here we build for the first time a substantial magnetic phase diagram under lateral strain and charge doping, the two factors that are easily modulated in single-layer CrI3via substrate and gating controls. We demonstrate that both lateral strain and charge doping efficiently change the coupling between the local spins and thus have unexpected effects on the magnetic properties of CrI3. In particular, the strain tunes the magnetic order and anisotropy: a compressive strain leads to a phase transition from a ferromagnetic insulator to an antiferromagnetic insulator, while a tensile strain can flip the magnetic orientation from off-plane to in-plane. Furthermore, we find that the phase transition under compressive strain is insensitive to charge doping, whereas the phase transition under tensile strain is modulated by electron doping significantly. Our predicted magnetic phase diagram and rationalized analysis indicate the single-layer CrI3 to be an ideal system to harness both basic magnetic physics and building blocks for magnetoelastic applications.

133 citations


Journal ArticleDOI
TL;DR: The photon-mediated spin interactions demonstrated here may be engineered to create dynamical gauge fields and quantum spin glasses.
Abstract: We observe the joint spin-spatial (spinor) self-organization of a two-component Bose-Einstein condensate (BEC) strongly coupled to an optical cavity. This unusual nonequilibrium Hepp-Lieb-Dicke phase transition is driven by an off-resonant Raman transition formed from a classical pump field and the emergent quantum dynamical cavity field. This mediates a spinor-spinor interaction that, above a critical strength, simultaneously organizes opposite spinor states of the BEC on opposite checkerboard configurations of an emergent 2D lattice. The resulting spinor density-wave polariton condensate is observed by directly detecting the atomic spin and momentum state and by holographically reconstructing the phase of the emitted cavity field. The latter provides a direct measure of the spin state, and a spin-spatial domain wall is observed. The photon-mediated spin interactions demonstrated here may be engineered to create dynamical gauge fields and quantum spin glasses.

129 citations


Journal ArticleDOI
26 Feb 2018
TL;DR: Schnack et al. as mentioned in this paper reported a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at a quantum critical point, where the ground state and thus low-temperature properties of a material change drastically upon even a small variation of appropriate external parameters.
Abstract: The cyclisation of a short chain into a ring provides fascinating scenarios in terms of transforming a finite array of spins into a quasi-infinite structure. If frustration is present, theory predicts interesting quantum critical points, where the ground state and thus low-temperature properties of a material change drastically upon even a small variation of appropriate external parameters. This can be visualised as achieving a very high and pointed summit where the way down has an infinity of possibilities, which by any parameter change will be rapidly chosen, in order to reach the final ground state. Here we report a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at such a quantum critical point. It has a ground state spin of S = 60, the largest ever observed for a molecule (120 times that of a single electron). [Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10]·20MeCN forms a nano-torus with alternating gadolinium and iron ions with a nearest neighbour Fe–Gd coupling and a frustrating next-nearest neighbour Fe–Fe coupling. Such a spin arrangement corresponds to a cyclic delta or saw-tooth chain, which can exhibit unusual frustration effects. In the present case, the quantum critical point bears a ‘flatland’ of tens of thousands of energetically degenerate states between which transitions are possible at no energy costs with profound caloric consequences. Entropy-wise the energy flatland translates into the pointed summit overlooking the entropy landscape. Going downhill several target states can be reached depending on the applied physical procedure which offers new prospects for addressability. A single molecule is synthesised with a very large spin state. Molecules that have large spin states have several potential applications such as providing contrast agents for magnetic resonance imaging, however, high-spin molecules are fairly rare because spins have a tendency of pairing up into non-magnetic singlets. An international team of researchers led by Jurgen Schnack from Bielefeld University and Annie Powell from Karlsruhe Institute of Technology now demonstrates a type of molecular magnet that has a ground state spin of S=60, which is 120 times that of a single electron. The mixed 3d/4f cyclic coordination cluster forms a complex nano-torus, whose arrangement gives rise to unusual forms of magnetic frustration, pushing this system towards a quantum critical point that has tens of thousands of energetically degenerate states.

96 citations


Journal ArticleDOI
TL;DR: A storage scheme that is insensitive to spin-exchange collisions is presented and experimentally demonstrated, thus enabling long storage times at high atomic densities and laying the foundations for hour-long quantum memories using rare-gas nuclear spins.
Abstract: Light storage, the controlled and reversible mapping of photons onto long-lived states of matter, enables memory capability in optical quantum networks. Prominent storage media are warm alkali vapors due to their strong optical coupling and long-lived spin states. In a dense gas, the random atomic collisions dominate the lifetime of the spin coherence, limiting the storage time to a few milliseconds. Here we present and experimentally demonstrate a storage scheme that is insensitive to spin-exchange collisions, thus enabling long storage times at high atomic densities. This unique property is achieved by mapping the light field onto spin orientation within a decoherence-free subspace of spin states. We report on a record storage time of 1 s in room-temperature cesium vapor, a 100-fold improvement over existing storage schemes. Furthermore, our scheme lays the foundations for hour-long quantum memories using rare-gas nuclear spins.

91 citations


Journal ArticleDOI
TL;DR: This work proposes an advanced method for the skyrmionium nucleation due to a local enhancement of the spin Hall effect by means of micromagnetic simulations.
Abstract: The lateral motion of a magnetic skyrmion, arising because of the skyrmion Hall effect, imposes a number of restrictions on the use of this spin state in the racetrack memory. A skyrmionium is a more promising spin texture for memory applications, since it has zero total topological charge and propagates strictly along a nanotrack. Here, the stability of the skyrmionium, as well as the dependence of its size on the magnetic parameters, such as the Dzyaloshinskii–Moriya interaction and perpendicular magnetic anisotropy, are studied by means of micromagnetic simulations. We propose an advanced method for the skyrmionium nucleation due to a local enhancement of the spin Hall effect. The stability of the skyrmionium being in motion under the action of the spin polarized current is analyzed.

90 citations


Journal ArticleDOI
TL;DR: This paper demonstrates that the combined CASPT2/CC approach is efficient by studying the spin state energetics of a series of iron complexes modeling important intermediates in oxidative catalytic processes in chemistry and biochemistry.
Abstract: In previous work on the performance of multiconfigurational second-order perturbation theory (CASPT2) in describing spin state energetics in first-row transition metal systems [Pierloot et al. J. Chem. Theory Comput. 2017, 13, 537−553], we showed that standard CASPT2 works well for valence correlation but does not describe the metal semicore (3s3p) correlation effects accurately. This failure is partially responsible for the well-known bias toward high-spin states of CASPT2. In this paper, we expand our previous work and show that this bias could be partly removed with a combined CASPT2/CC approach: using high-quality CASPT2 with extensive correlation-consistent basis sets for valence correlation and low-cost CCSD(T) calculations with minimal basis sets for the metal semicore (3s3p) correlation effects. We demonstrate that this approach is efficient by studying the spin state energetics of a series of iron complexes modeling important intermediates in oxidative catalytic processes in chemistry and biochem...

Journal ArticleDOI
TL;DR: The authors demonstrate the fabrication, manipulation and readout of a two qubit phosphorous donor device and determine the tunnel coupling between the 2P−1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.
Abstract: Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P−1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P−1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.

Journal ArticleDOI
28 Jun 2018
TL;DR: In this article, the authors provide a complete quantitative description of the electronic structure and analyze the crossings and local minima of the energy surface of triplet and singlet states of point defect qubits.
Abstract: Coupled localized electron spins hosted by defects in semiconductors implement quantum bits with the potential to revolutionize nanoscale sensors and quantum information processing. The present understanding of optical means of spin state manipulation and read-out calls for quantitative theoretical description of the active states, built-up from correlated electrons in a bath of extended electron states. Hitherto we propose a first-principles scheme based on many body perturbation theory and configuration interaction and address two room temperature point defect qubits, the nitrogen vacancy in diamond and the divacancy in silicon carbide. We provide a complete quantitative description of the electronic structure and analyze the crossings and local minima of the energy surface of triplet and singlet states. Our numerical results not only extend the knowledge of the spin-dependent optical cycle of these defects, but also demonstrate the potential of our method for quantitative theoretical studies of point defect qubits. The electronic states of point defects in semiconductors can be studied via first principles, suitable for large systems with thousands of electrons. The nitrogen-vacancy centre in diamond and the divacancy complex in silicon carbide are promising candidates for quantum applications. The non-radiative decay from their optically allowed excited states is pivotal to initializing and reading their spin. Michel Bockstedte and colleagues now model the electronic states of these defects using a method that relies on many-body theory and is free of empirical parameters. They map the optical transitions, as well as the spin relaxation dynamics and the role of the spin-orbit and electron-phonon coupling interactions involved, in good agreement with experimental data. The method is suitable for large systems, and can therefore be used to model qubits in other semiconductors.

Journal ArticleDOI
TL;DR: The nature of the changes occurring in the S2LS to S2HS transition which allow the S1HS to S3 transition to occur below 200 K is discussed and a protocol for generating S3 in concentrated samples without the need for saturating flashes is provided.

Journal ArticleDOI
TL;DR: In this article, it is demonstrated by using multiconfigurational quantum chemical approaches, including the novel Stochastic-CASSCF method, that electron delocalization between the metal center and the π system of the macrocycle differentially stabilizes the triplet spin states over the quintet.
Abstract: Spin fluctuations in Fe(II)-porphyrins are at the heart of heme-proteins functionality. Despite significant progress in porphyrin chemistry, the mechanisms that rule spin state stabilization remain elusive. Here, it is demonstrated by using multiconfigurational quantum chemical approaches, including the novel Stochastic-CASSCF method, that electron delocalization between the metal center and the π system of the macrocycle differentially stabilizes the triplet spin states over the quintet. This delocalization takes place via charge-transfer excitations, involving the π system of the macrocycle and the out-of-plane iron d orbitals, key linking orbitals between metal and macrocycle. Through a correlated breathing mechanism the 3d electrons can make transitions toward the π orbitals of the macrocycle. This guarantees a strong coupling between the on-site radial correlation on the metal and electron delocalization. Opposite-spin 3d electrons of the triplet can effectively reduce electron repulsion in this mann...

Journal ArticleDOI
TL;DR: In this paper, the authors presented the first 2D Hofmann-type materials to exhibit the elusive combination of ambient temperature spin crossover with wide thermal hysteresis (ΔT = 50 and 65 K), and combined structural, magnetic, spectroscopic, and theoretical analyses showed that the highly cooperative transition behaviors of these layered materials arise due to strong host-host interactions in their interdigitated lattices, which optimises long-range communication pathways.
Abstract: Molecule-based spin state switching materials that display ambient temperature transitions with accompanying wide thermal hysteresis offer an opportunity for electronic switching, data storage, and optical technologies but are rare in existence. Here, we present the first 2D Hofmann-type materials to exhibit the elusive combination of ambient temperature spin crossover with wide thermal hysteresis (ΔT = 50 and 65 K). Combined structural, magnetic, spectroscopic, and theoretical analyses show that the highly cooperative transition behaviours of these layered materials arise due to strong host–host interactions in their interdigitated lattices, which optimises long-range communication pathways. With the presence of water molecules in the interlayer pore space in the hydrated phases, competing host–host and host–guest interactions occur, whilst water removal dramatically increases the framework cooperativity, thus affording systematic insight into the structural features that favour optimal spin crossover properties.

Journal ArticleDOI
TL;DR: Control over the spin state of a single iron(II) phthalocyanine molecule by its positioning on N-doped graphene is demonstrated by demonstrating the unique capability of the high-resolution imaging technique to discriminate between different spin states of single molecules.
Abstract: Nitrogen doping of graphene significantly affects its chemical properties, which is particularly important in molecular sensing and electrocatalysis applications. However, detailed insight into interaction between N-dopant and molecules at the atomic scale is currently lacking. Here we demonstrate control over the spin state of a single iron(II) phthalocyanine molecule by its positioning on N-doped graphene. The spin transition was driven by weak intermixing between orbitals with z-component of N-dopant (pz of N-dopant) and molecule (dxz, dyz, dz2) with subsequent reordering of the Fe d-orbitals. The transition was accompanied by an electron density redistribution within the molecule, sensed by atomic force microscopy with CO-functionalized tip. This demonstrates the unique capability of the high-resolution imaging technique to discriminate between different spin states of single molecules. Moreover, we present a method for triggering spin state transitions and tuning the electronic properties of molecules through weak non-covalent interaction with suitably functionalized graphene.

Journal ArticleDOI
TL;DR: Spin-exchange process is discussed and the spin state of an ensemble of neutral Rb atoms can be used to control the final spin of an imbedded Sr+ ion in the collisions, which agrees with theoretical predictions.
Abstract: Quantum control of chemical reactions is an important goal in chemistry and physics. Ultracold chemical reactions are often controlled by preparing the reactants in specific quantum states. Here we demonstrate spin-controlled atom–ion inelastic (spin-exchange) processes and chemical (charge-exchange) reactions in an ultracold Rb-Sr+ mixture. The ion’s spin state is controlled by the atomic hyperfine spin state via spin-exchange collisions, which polarize the ion’s spin parallel to the atomic spin. We achieve ~ 90% spin polarization due to the absence of strong spin-relaxation channel. Charge-exchange collisions involving electron transfer are only allowed for (RbSr)+ colliding in the singlet manifold. Initializing the atoms in various spin states affects the overlap of the collision wave function with the singlet molecular manifold and therefore also the reaction rate. Our observations agree with theoretical predictions.

Journal ArticleDOI
TL;DR: Crystal structure analysis revealed a pronounced anisotropy of the lattice compressibility, which was correlated with the difference in spacing between the molecules as well as by the distribution of the stiffest C-H···N interactions in different crystallographic directions.
Abstract: Molecular spin crossover complexes are promising candidates for mechanical actuation purposes. The relationships between their crystal structure and mechanical properties remain, however, not well understood. In this study, combining high pressure synchrotron X-ray diffraction, nuclear inelastic scattering, and micromechanical measurements, we assessed the effective macroscopic bulk modulus (B = 11.5 ± 1.5 GPa), Young’s modulus (Y = 10.9 ± 1.0 GPa), and Poisson’s ratio (ν = 0.34 ± 0.04) of the spin crossover complex [FeII(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). Crystal structure analysis revealed a pronounced anisotropy of the lattice compressibility, which was correlated with the difference in spacing between the molecules as well as by the distribution of the stiffest C–H···N interactions in different crystallographic directions. Switching the molecules from the low spin to the high spin state leads to a remarkable drop of the Young’s modulus to 7.1 ± 0.5 GPa both in bulk and thin film samples. The result...


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide, in which the spin state of the electron directs the flow of photons through the waveguide.
Abstract: The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently, the system is used to implement a single-spin photonic switch, in which the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates, single-photon transistors and the efficient generation of a photonic cluster state.

Journal ArticleDOI
TL;DR: In this article, the magnetic interactions between the electron spins of two spin-1/2 atoms were engineered to create a clock transition and thus enhance their spin coherence, which can resist decoherence by using a subspace of states that is immune to magnetic field fluctuations.
Abstract: Manipulation of spin states at the single-atom scale underlies spin-based quantum information processing and spintronic devices. These applications require protection of the spin states against quantum decoherence due to interactions with the environment. While a single spin is easily disrupted, a coupled-spin system can resist decoherence by using a subspace of states that is immune to magnetic field fluctuations. Here, we engineered the magnetic interactions between the electron spins of two spin-1/2 atoms to create a “clock transition” and thus enhance their spin coherence. To construct and electrically access the desired spin structures, we use atom manipulation combined with electron spin resonance (ESR) in a scanning tunneling microscope. We show that a two-level system composed of a singlet state and a triplet state is insensitive to local and global magnetic field noise, resulting in much longer spin coherence times compared with individual atoms. Moreover, the spin decoherence resulting from the interaction with tunneling electrons is markedly reduced by a homodyne readout of ESR. These results demonstrate that atomically precise spin structures can be designed and assembled to yield enhanced quantum coherence.

Journal ArticleDOI
TL;DR: A rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution is provided.
Abstract: Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII (CN)3 ]- (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin-crossover (SCO) on FeII sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the FeII ions and antiferromagnetic interactions between FeIII and FeII ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)FeIII (CN)3 ]- units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution.

Journal ArticleDOI
TL;DR: In this paper, a mononuclear compound was constructed via the coordination of fluorophores with FeII ions, whose electronic configuration changed from low spin to high spin upon light irradiation.
Abstract: Molecular materials possessing phototunable fluorescence properties have attracted great interest owing to their potential applications in optical switches and storage However, most fluorescence modulation is realized through light-responsive structural isomerization in solution It is a formidable challenge to achieve phototunable fluorescence emission with high fatigue resistance and a fast response rate in the solid state for the development of devices Here, a mononuclear compound was constructed via the coordination of fluorophores with FeII ions, whose electronic configuration changed from low spin to high spin upon light irradiation The photoinduced spin crossover of FeII ions was accompanied by a 20% increase in the fluorescence emission intensity A temperature-dependent spectroscopic study together with time-dependent density functional theory calculations revealed that the effective spectral overlap between the emission of the fluorophores and the absorption band of the FeII ions differed between the low spin and high spin states The photoinduced spin crossover switched the energy transfer from the fluorophore to the FeII ion, resulting in fluorescence modulation The presented results provide a novel approach for developing optical memory and sensors via electron rearrangement of photoinduced spin crossover

Journal ArticleDOI
TL;DR: In this article, a local Hamiltonian with a featureless (fully gapped and nondegenerate) ground state could exist in certain quantum spin systems, and the lattice symmetry of the spin system acts as an onsite symmetry in the field theory that describes both the selected critical point and the corresponding boundary state.
Abstract: We ask whether a local Hamiltonian with a featureless (fully gapped and nondegenerate) ground state could exist in certain quantum spin systems. We address this question by mapping the vicinity of certain quantum critical point (or gapless phase) of the $d$-dimensional spin system under study to the boundary of a $(d+1)$-dimensional bulk state, and the lattice symmetry of the spin system acts as an onsite symmetry in the field theory that describes both the selected critical point of the spin system and the corresponding boundary state of the $(d+1)$-dimensional bulk. If the symmetry action of the field theory is nonanomalous, i.e., the corresponding bulk state is a trivial state instead of a bosonic symmetry-protected topological (SPT) state, then a featureless ground state of the spin system is allowed; if the corresponding bulk state is indeed a nontrivial SPT state, then it likely excludes the existence of a featureless ground state of the spin system. From this perspective, we identify the spin systems with $\mathrm{SU}(N$) and $\mathrm{SO}(N$) symmetries on one-, two-, and three-dimensional lattices that permit a featureless ground state. We also verify our conclusions by other methods, including an explicit construction of these featureless spin states.

Journal ArticleDOI
TL;DR: The iron(II) [2×2] grid complex Fe-8H has been synthesized and characterized and undergoes spin-crossover (SCO) upon deprotonation of the hydrazine-based terpyridine-like ligand.
Abstract: The iron(II) [2×2] grid complex Fe-8H has been synthesized and characterized. It undergoes spin-crossover (SCO) upon deprotonation of the hydrazine-based terpyridine-like ligand. The deprotonation patterns have been determined by X-ray crystallography and 1H NMR spectroscopy and discussed in relation to the spin state of the iron(II) centers, which influences greatly the pKa of the ligand. The synthesis of the magnetically silent zinc(II) analogue is also reported, and its (de)protonation behavior has been characterized to serve as a reference for the study of the FeII grid complexes. DFT computations have also been performed in order to investigate how the successive deprotonation of the bridging ligands affects the SCO behavior within the grid.

Journal ArticleDOI
TL;DR: It is shown that the use of circularly polarized ultraviolet light at 400 nm can create better than 90% spin polarization with focal volume effect considered, which paves the way to produce high-degree spin-polarized electron sources from strong-field multiphoton ionization.
Abstract: We perform a joint experimental and theoretical study on momentum- and energy-resolved photoelectron spin polarization in multiphoton ionization of Xe atoms by circularly polarized fields. We experimentally measure the photoelectron momentum distributions of Xe atoms in circularly polarized near-infrared (800 nm) and ultraviolet (400 nm) light, respectively. We analyze the momentum- and energy-resolved photoelectron spin polarization by comparing the experimental photoelectron momentum distributions with the simulations, although we cannot derive the spin polarization solely from the experiment. We show that the use of circularly polarized ultraviolet light at 400 nm can create better than 90% spin polarization with focal volume effect considered, which enables the separation of the spin states by momentum gating. This paves the way to produce high-degree spin-polarized electron sources from strong-field multiphoton ionization.

Journal ArticleDOI
TL;DR: A giant {Ni21Gd20} cage is designed, which using quantum monte carlo simulations they predict to possess a spin ground state approaching S = 91, and low-temperature measurements confirm the spin groundState but suggest a more complex picture due to the single ion anisotropy.
Abstract: The detailed analysis of magnetic interactions in a giant molecule is difficult both because the synthesis of such compounds is challenging and the number of energy levels increases exponentially with the magnitude and number of spins. Here, we isolated a {Ni21Gd20} nanocage with a large number of energy levels (≈5 × 1030) and used quantum Monte Carlo (QMC) simulations to perform a detailed analysis of magnetic interactions. Based on magnetization measurements above 2 K, the QMC simulations predicted very weak ferromagnetic interactions that would give a record S = 91 spin ground state. Low-temperature measurements confirm the spin ground state but suggest a more complex picture due to the single ion anisotropy; this has also been modeled using the QMC approach. The high spin and large number of low-lying states lead to a large low-field magnetic entropy (14.1 J kg−1 K−1 for ΔH = 1 T at 1.1 K) for this material. Paramagnetic metal clusters with large ground spin states often possess attractive magnetic behaviors for information storage or solid-state cooling applications. Here, the authors design a giant {Ni21Gd20} cage, which using quantum monte carlo simulations they predict to possess a spin ground state approaching S = 91.

Journal ArticleDOI
TL;DR: In this paper, a review of high-pressure spin crossover research is presented, providing an overview of methods of pressure generation and associated detection methods as well as selected recent results, with a focus on the spectral and structural information provided by the detection methods.

Journal ArticleDOI
TL;DR: An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T, with efficient coherent polarization transfer seen for proton-carbon spin systems at ultralow fields.
Abstract: An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.