scispace - formally typeset
Search or ask a question

Showing papers on "Synaptic signaling published in 2020"


Journal ArticleDOI
TL;DR: This study profiled 169,496 nuclei from the prefrontal cortical samples of AD patients and healthy controls by single-nucleus RNA sequencing, revealing a role of antigen presentation by angiogenic endothelial cells in AD and offering important insights into the therapeutic potential of targeting glial- and endothelial-specific pathways to restore brain homeostasis in AD.
Abstract: Alzheimer’s disease (AD) is the most common form of dementia but has no effective treatment. A comprehensive investigation of cell type-specific responses and cellular heterogeneity in AD is required to provide precise molecular and cellular targets for therapeutic development. Accordingly, we perform single-nucleus transcriptome analysis of 169,496 nuclei from the prefrontal cortical samples of AD patients and normal control (NC) subjects. Differential analysis shows that the cell type-specific transcriptomic changes in AD are associated with the disruption of biological processes including angiogenesis, immune activation, synaptic signaling, and myelination. Subcluster analysis reveals that compared to NC brains, AD brains contain fewer neuroprotective astrocytes and oligodendrocytes. Importantly, our findings show that a subpopulation of angiogenic endothelial cells is induced in the brain in patients with AD. These angiogenic endothelial cells exhibit increased expression of angiogenic growth factors and their receptors (i.e., EGFL7, FLT1, and VWF) and antigen-presentation machinery (i.e., B2M and HLA-E). This suggests that these endothelial cells contribute to angiogenesis and immune response in AD pathogenesis. Thus, our comprehensive molecular profiling of brain samples from patients with AD reveals previously unknown molecular changes as well as cellular targets that potentially underlie the functional dysregulation of endothelial cells, astrocytes, and oligodendrocytes in AD, providing important insights for therapeutic development.

174 citations


Journal ArticleDOI
TL;DR: The function of astrocytes and microglia in glutamate homeostasis is discussed, focusing on how glial dysfunction causes glutamate-induced excitotoxicity leading to neurodegeneration in PD.

138 citations


Journal ArticleDOI
TL;DR: Proteome-wide association studies of brain samples from older adults revealed effects of cerebral atherosclerosis and Alzheimer’s disease, and a subset of proteins and protein co-expression modules were associated with both, suggesting shared mechanisms.
Abstract: Cerebral atherosclerosis contributes to dementia via unclear processes. We performed proteomic sequencing of dorsolateral prefrontal cortex in 438 older individuals and found associations between cerebral atherosclerosis and reduced synaptic signaling and between RNA splicing and increased oligodendrocyte development and myelination. Consistently, single-cell RNA sequencing showed cerebral atherosclerosis associated with higher oligodendrocyte abundance. A subset of proteins and modules associated with cerebral atherosclerosis was also associated with Alzheimer's disease, suggesting shared mechanisms.

78 citations


Journal ArticleDOI
TL;DR: Evidence is provided that several protein assemblies involved in the establishment of neuronal stem cell (NSC) polarity and in the asymmetric division of NSCs form distinct molecular condensates via LLPS, indicating that direct communication between membraneless and membrane-based organelles is a common theme in neurons and other types of cells.

66 citations


Journal ArticleDOI
TL;DR: It is demonstrated that FSI myelination is required for the establishment and maintenance of the powerful FSI-mediated feedforward inhibition of cortical sensory circuits and is critical for the function of mature cortical inhibitory circuits.
Abstract: Myelination of projection neurons by oligodendrocytes is key to optimize action potential conduction over long distances. However, a large fraction of myelin enwraps the axons of parvalbumin-positive fast-spiking interneurons (FSI), exclusively involved in local cortical circuits. Whether FSI myelination contributes to the fine-tuning of intracortical networks is unknown. Here we demonstrate that FSI myelination is required for the establishment and maintenance of the powerful FSI-mediated feedforward inhibition of cortical sensory circuits. The disruption of GABAergic synaptic signaling of oligodendrocyte precursor cells prior to myelination onset resulted in severe FSI myelination defects characterized by longer internodes and nodes, aberrant myelination of branch points and proximal axon malformation. Consequently, high-frequency FSI discharges as well as FSI-dependent postsynaptic latencies and strengths of excitatory neurons were reduced. These dysfunctions generated a strong excitation-inhibition imbalance that correlated with whisker-dependent texture discrimination impairments. FSI myelination is therefore critical for the function of mature cortical inhibitory circuits.

65 citations


Journal ArticleDOI
TL;DR: This study performs the largest single-cell transcriptomic study of human iPSC-derived dopaminergic neurons to elucidate gene expression dynamics in response to cytotoxic and genetic stressors, and reveals cell type-specific perturbations in human dopamine neurons.

62 citations


Journal ArticleDOI
TL;DR: The progress in understanding HD-related impairments in the cortical and basal ganglia circuits is reviewed, new opportunities that have opened with the development of modern circuit analysis methods are outlined, and unbiased systems biology studies are providing insights into the possible molecular underpinnings of these functional defects.
Abstract: Huntington's disease (HD) is a hereditary neurodegenerative disorder that typically manifests in midlife with motor, cognitive, and/or psychiatric symptoms. The disease is caused by a CAG triplet expansion in exon 1 of the huntingtin gene and leads to a severe neurodegeneration in the striatum and cortex. Classical electrophysiological studies in genetic HD mouse models provided important insights into the disbalance of excitatory, inhibitory and neuromodulatory inputs, as well as progressive disconnection between the cortex and striatum. However, the involvement of local cortical and striatal microcircuits still remains largely unexplored. Here we review the progress in understanding HD-related impairments in the cortical and basal ganglia circuits, and outline new opportunities that have opened with the development of modern circuit analysis methods. In particular, in vivo imaging studies in mouse HD models have demonstrated early structural and functional disturbances within the cortical network, and optogenetic manipulations of striatal cell types have started uncovering the causal roles of certain neuronal populations in disease pathogenesis. In addition, the important contribution of astrocytes to HD-related circuit defects has recently been recognized. In parallel, unbiased systems biology studies are providing insights into the possible molecular underpinnings of these functional defects at the level of synaptic signaling and neurotransmitter metabolism. With these approaches, we can now reach a deeper understanding of circuit-based HD mechanisms, which will be crucial for the development of effective and targeted therapeutic strategies.

59 citations


Journal ArticleDOI
TL;DR: This study highlights complex relationships between gene co-expression networks in the brain and clinical state and polygenic risk for SCZ and provides a strategy for using this information in selecting and prioritizing potentially targetable gene sets for therapeutic drug development.
Abstract: Schizophrenia polygenic risk is plausibly manifested by complex transcriptional dysregulation in the brain, involving networks of co-expressed and functionally related genes. The main purpose of this study was to identify and prioritize co-expressed gene sets in a hierarchical manner, based on the strength of the relationships with clinical diagnosis and with polygenic risk for schizophrenia. Weighted Gene Co-expression Network Analysis (WGCNA) was applied to RNA-quality-adjusted DLPFC RNA-Seq data from the LIBD Postmortem Human Brain Repository (90 controls, 74 schizophrenia cases; all Caucasians) to construct co-expression networks and detect “modules” of co-expressed genes. After multiple internal and external validation procedures, modules of selected interest were tested for enrichment in biological ontologies, for association with schizophrenia polygenic risk scores (PRSs) and with diagnosis, and also for enrichment in genes within the significant GWAS loci reported by the Psychiatric Genomic Consortium (PGC2). The association between schizophrenia genetic signals and modules of co-expression converged on one module showing not only a significant association with both diagnosis and PRS but also significant overlap with 36 PGC2 loci genes, deemed the strongest candidates for drug targets. This module contained many genes involved in synaptic signaling and neuroplasticity. Fifty-three PGC2 genes were in modules associated only with diagnosis and 59 in modules unrelated to diagnosis or PRS. Our study highlights complex relationships between gene co-expression networks in the brain and clinical state and polygenic risk for SCZ and provides a strategy for using this information in selecting and prioritizing potentially targetable gene sets for therapeutic drug development.

53 citations


Journal ArticleDOI
24 Apr 2020-iScience
TL;DR: Ber-D inhibits metal-dependent and -independent Aβ aggregation and averts mitochondrial dysfunction and corresponding neuronal toxicity contributing to premature apoptosis, which makes Ber-D a potential therapeutic candidate to ameliorate multifaceted Aβ toxicity in AD.

52 citations


Journal ArticleDOI
TL;DR: Oral administration of an FAAH inhibitor during a brief stress prevents the early synaptic changes that eventually build up to hyperexcitability in the amygdala, offering insights into potential therapeutic strategies for targeting endocannabinoid signaling to prevent the gradual development of affective symptoms and underlying amygdalar dysfunction triggered by traumatic stress.
Abstract: Even a brief exposure to severe stress strengthens synaptic connectivity days later in the amygdala, a brain area implicated in the affective symptoms of stress-related psychiatric disorders. However, little is known about the synaptic signaling mechanisms during stress that eventually culminate in its delayed impact on the amygdala. Hence, we investigated early stress-induced changes in amygdalar synaptic signaling in order to prevent its delayed effects. Whole-cell recordings in basolateral amygdala (BLA) slices from rats revealed higher frequency of miniature excitatory postsynaptic currents (mEPSCs) immediately after 2-h immobilization stress. This was replicated by inhibition of cannabinoid receptors (CB1R), suggesting a role for endocannabinoid (eCB) signaling. Stress also reduced N-arachidonoylethanolamine (AEA), an endogenous ligand of CB1R. Since stress-induced activation of fatty acid amide hydrolase (FAAH) reduces AEA, we confirmed that oral administration of an FAAH inhibitor during stress prevents the increase in synaptic excitation in the BLA soon after stress. Although stress also caused an immediate reduction in synaptic inhibition, this was not prevented by FAAH inhibition. Strikingly, FAAH inhibition during the traumatic stressor was also effective 10 d later on the delayed manifestation of synaptic strengthening in BLA neurons, preventing both enhanced mEPSC frequency and increased dendritic spine-density. Thus, oral administration of an FAAH inhibitor during a brief stress prevents the early synaptic changes that eventually build up to hyperexcitability in the amygdala. This framework is of therapeutic relevance because of growing interest in targeting eCB signaling to prevent the gradual development of emotional symptoms and underlying amygdalar dysfunction triggered by traumatic stress.

44 citations


Posted ContentDOI
18 Sep 2020-medRxiv
TL;DR: This genome-wide association study (GWAS) of 41,917 BD cases and 371,549 controls identified 64 associated genomic loci, which provides the best-powered BD polygenic scores to date, when applied in both European and diverse ancestry samples.
Abstract: Bipolar disorder (BD) is a heritable mental illness with complex etiology. We performed a genome-wide association study (GWAS) of 41,917 BD cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. BD risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating eQTL data implicated 15 genes robustly linked to BD via gene expression, including druggable genes such as HTR6, MCHR1, DCLK3 and FURIN. This GWAS provides the best-powered BD polygenic scores to date, when applied in both European and diverse ancestry samples. Analyses of BD subtypes indicated high but imperfect genetic correlation between BD type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of BD, identify novel therapeutic leads and prioritize genes for functional follow-up studies.

Journal ArticleDOI
10 Dec 2020-Cells
TL;DR: Key findings in the study of synaptic and cellular mechanisms as drivers of AD, including Ca2+ dyshomeostasis are detailed and implications for future AD treatments are discussed.
Abstract: Ca2+ homeostasis is essential for multiple neuronal functions and thus, Ca2+ dyshomeostasis can lead to widespread impairment of cellular and synaptic signaling, subsequently contributing to dementia and Alzheimer's disease (AD). While numerous studies implicate Ca2+ mishandling in AD, the cellular basis for loss of cognitive function remains under investigation. The process of synaptic degradation and degeneration in AD is slow, and constitutes a series of maladaptive processes each contributing to a further destabilization of the Ca2+ homeostatic machinery. Ca2+ homeostasis involves precise maintenance of cytosolic Ca2+ levels, despite extracellular influx via multiple synaptic Ca2+ channels, and intracellular release via organelles such as the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) and IP3R, lysosomes via transient receptor potential mucolipin channel (TRPML) and two pore channel (TPC), and mitochondria via the permeability transition pore (PTP). Furthermore, functioning of these organelles relies upon regulated inter-organelle Ca2+ handling, with aberrant signaling resulting in synaptic dysfunction, protein mishandling, oxidative stress and defective bioenergetics, among other consequences consistent with AD. With few effective treatments currently available to mitigate AD, the past few years have seen a significant increase in the study of synaptic and cellular mechanisms as drivers of AD, including Ca2+ dyshomeostasis. Here, we detail some key findings and discuss implications for future AD treatments.

Journal ArticleDOI
TL;DR: This communication will review the current understanding of the trafficking of miRNA-containing EXs and EMVs from astrocytes and “activated pro-inflammatory” microglia to target neurons in neurodegenerative diseases with an emphasis on Alzheimer’s disease wherever possible.
Abstract: Exosomes (EXs) and extracellular microvesicles (EMVs) represent a diverse assortment of plasma membrane-derived nanovesicles, 30-1000 nm in diameter, released by all cell lineages of the central nervous system (CNS). They are examples of a very active and dynamic form of extracellular communication and the conveyance of biological information transfer essential to maintain homeostatic neurological functions and contain complex molecular cargoes representative of the cytoplasm of their cells of origin. These molecular cargoes include various mixtures of proteins, lipids, proteolipids, cytokines, chemokines, carbohydrates, microRNAs (miRNA) and messenger RNAs (mRNA) and other components, including end-stage neurotoxic and pathogenic metabolic products, such as amyloid beta (Aβ) peptides. Brain microglia, for example, respond to both acute CNS injuries and degenerative diseases with complex reactions via the induction of a pro-inflammatory phenotype, and secrete EXs and EMVs enriched in selective pathogenic microRNAs (miRNAs) such as miRNA-34a, miRNA-125b, miRNA-146a, miRNA-155, and others that are known to promote neuro-inflammation, induce complement activation, disrupt innate-immune signaling and deregulate the expression of neuron-specific phosphoproteins involved in neurotropism and synaptic signaling. This communication will review our current understanding of the trafficking of miRNA-containing EXs and EMVs from astrocytes and "activated pro-inflammatory" microglia to target neurons in neurodegenerative diseases with an emphasis on Alzheimer's disease wherever possible.

Journal ArticleDOI
TL;DR: Low dose ketamine produces antidepressant effects and has independent behavioral and synaptic effects compared to higher doses of ketamine that are used to model schizophrenia, which strengthen the knowledge on specific signaling associated with ketamine's rapid antidepressant effects.

Journal ArticleDOI
TL;DR: The memory‐impairing effects of two binge‐like EtOH exposure involve NMDA receptor‐dependent LTD deficits due to a GluNN2A/GluN2B imbalance resulting from changes in Glun2B expression induced by HDAC2.
Abstract: Ethanol (EtOH) induces cognitive impairment through modulation of synaptic plasticity notably in the hippocampus. The cellular mechanism(s) of these EtOH effects may range from synaptic signaling modulation to alterations of the epigenome. Previously, we reported that two binge-like exposures to EtOH (3 g/kg, ip, 9 h apart) in adolescent rats abolished long-term synaptic depression (LTD) in hippocampus slices, induced learning deficits, and increased N-methyl-d-aspartate (NMDA) receptor signaling through its GluN2B subunit after 48 hours. Here, we tested the hypothesis of EtOH-induced epigenetic alterations leading to modulation of GluN2B and GluN2A NMDA receptor subunits. Forty-two days old rats were treated with EtOH or the histone deacetylase inhibitor (HDACi) sodium butyrate (NaB, 600 mg/kg, ip) injected alone or 30 minutes before EtOH. After 48 hours, learning was tested with novel object recognition while synaptic plasticity and the role of GluN2A and GluN2B subunits in NMDA-fEPSP were measured in CA1 field of hippocampus slices. LTD and memory were impaired 48 hours after EtOH and NMDA-fEPSP analysis unraveled changes in the GluN2A/GluN2B balance. These results were associated with an increase in histone deacetylase (HDAC) activity and HDAC2 mRNA and protein while Ac-H4K12 labelling was decreased. EtOH increases expression of HDAC2 and mRNA level for GluN2B subunit (but not GluN2A), while HDAC2 modulates the promoter of the gene encoding GluN2B. Interestingly, NaB pretreatment prevented all the cellular and memory-impairing effects of EtOH. In conclusion, the memory-impairing effects of two binge-like EtOH exposure involve NMDA receptor-dependent LTD deficits due to a GluN2A/GluN2B imbalance resulting from changes in GluN2B expression induced by HDAC2.

Journal ArticleDOI
TL;DR: Findings point to a novel role of IQSEC2 in hippocampal interneuron synaptic function and development with implications for a class of intractable neurodevelopmental diseases.

Journal ArticleDOI
TL;DR: New insights are provided into the mechanisms underlying the high survival of oysters infected with OsHV-1 at 29°C, inducing host physiological processes that are unfavorable to the viral infection.
Abstract: Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.

Journal ArticleDOI
TL;DR: The investigation of autoantibodies against neuronal synaptic receptors/channels produced in patients with autoimmune encephalomyelitis provides a deeper understanding of the background of neurological symptoms in addition to novel insights into their basic neuroscience.
Abstract: Autoantibodies related to central nervous system (CNS) diseases propel research on paraneoplastic neurological syndrome (PNS). This syndrome develops autoantibodies in combination with certain neurological syndromes and cancers, such as anti-HuD antibodies in encephalomyelitis with small cell lung cancer and anti-Yo antibodies in cerebellar degeneration with gynecological cancer. These autoantibodies have roles in the diagnosis of neurological diseases and early detection of cancers that are usually occult. Most of these autoantibodies have no pathogenic roles in neuronal dysfunction directly. Instead, antigen-specific cytotoxic T lymphocytes are thought to have direct roles in neuronal damage. The recent discoveries of autoantibodies against neuronal synaptic receptors/channels produced in patients with autoimmune encephalomyelitis have highlighted insights into our understanding of the variable neurological symptoms in this disease. It has also improved our understanding of intractable epilepsy, atypical psychosis, and some demyelinating diseases that are ameliorated with immune therapies. The production and motility of these antibodies through the blood-brain barrier into the CNS remains unknown. Most of these recently identified autoantibodies bind to neuronal and glial cell surface synaptic receptors, potentially altering the synaptic signaling process. The clinical features differ among pathologies based on antibody targets. The investigation of these antibodies provides a deeper understanding of the background of neurological symptoms in addition to novel insights into their basic neuroscience.

Journal ArticleDOI
30 Jun 2020-eLife
TL;DR: It is suggested that PVs mediate slow spillover signaling in addition to conventional fast synaptic signaling, and that spillover transmission mediates activity-dependent regulation of early events in adult neurogenesis.
Abstract: Parvalbumin-expressing interneurons (PVs) in the dentate gyrus provide activity-dependent regulation of adult neurogenesis as well as maintain inhibitory control of mature neurons In mature neurons, PVs evoke GABAA postsynaptic currents (GPSCs) with fast rise and decay phases that allow precise control of spike timing, yet synaptic currents with fast kinetics do not appear in adult-born neurons until several weeks after cell birth Here we used mouse hippocampal slices to address how PVs signal to newborn neurons prior to the appearance of fast GPSCs Whereas PV-evoked currents in mature neurons exhibit hallmark fast rise and decay phases, newborn neurons display slow GPSCs with characteristics of spillover signaling We also unmasked slow spillover currents in mature neurons in the absence of fast GPSCs Our results suggest that PVs mediate slow spillover signaling in addition to conventional fast synaptic signaling, and that spillover transmission mediates activity-dependent regulation of early events in adult neurogenesis

Journal ArticleDOI
01 Jun 2020-Alcohol
TL;DR: The results of these studies suggest that chronic exposure to alcohol induces changes in neurovascular coupling that are region dependent.

Journal ArticleDOI
TL;DR: The aim of this review is to outline the major components of dopamine homeostasis at neurotransmitter release sites and describe the regional differences most relevant to understanding why some, but not all, dopamine neurons exhibit heightened vulnerability to neurodegeneration.

Journal ArticleDOI
28 Jan 2020-eLife
TL;DR: Nanobodies (single domain antibodies) are developed, which are functionally active as allosteric modulators, and co-crystal structures of the prokaryote (Erwinia) channel ELIC are solved, suggesting a common mechanism of modulation in this protein and ELIC.
Abstract: Pentameric ligand-gated ion channels (pLGICs) or Cys-loop receptors are involved in fast synaptic signaling in the nervous system. Allosteric modulators bind to sites that are remote from the neurotransmitter binding site, but modify coupling of ligand binding to channel opening. In this study, we developed nanobodies (single domain antibodies), which are functionally active as allosteric modulators, and solved co-crystal structures of the prokaryote (Erwinia) channel ELIC bound either to a positive or a negative allosteric modulator. The allosteric nanobody binding sites partially overlap with those of small molecule modulators, including a vestibule binding site that is not accessible in some pLGICs. Using mutagenesis, we extrapolate the functional importance of the vestibule binding site to the human 5-HT3 receptor, suggesting a common mechanism of modulation in this protein and ELIC. Thus we identify key elements of allosteric binding sites, and extend drug design possibilities in pLGICs with an accessible vestibule site.

Journal ArticleDOI
TL;DR: Kai-Xin-San has an important role in regulating the key node proteins in the synaptic signaling network, and are helpful to better understand the mechanism of the antidepressive effects of Kai-XIn-San and to provide objective theoretical support for its clinical application.

Journal ArticleDOI
TL;DR: In L6A, the interaction of mAChRs and nA ChRs results in an altered excitability and synaptic release, effectively strengthening CT output while weakening CC synaptic signaling.
Abstract: Acetylcholine (ACh) is known to regulate cortical activity during different behavioral states, for example, wakefulness and attention. Here we show a differential expression of muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs) in different layer 6A (L6A) pyramidal cell (PC) types of somatosensory cortex. At low concentrations, ACh induced a persistent hyperpolarization in corticocortical (CC) but a depolarization in corticothalamic (CT) L6A PCs via M 4 and M1 mAChRs, respectively. At ~ 1 mM, ACh depolarized exclusively CT PCs via α4β2 subunit-containing nAChRs without affecting CC PCs. Miniature EPSC frequency in CC PCs was decreased by ACh but increased in CT PCs. In synaptic connections with a presynaptic CC PC, glutamate release was suppressed via M4 mAChR activation but enhanced by nAChRs via α4β2 nAChRs when the presynaptic neuron was a CT PC. Thus, in L6A, the interaction of mAChRs and nAChRs results in an altered excitability and synaptic release, effectively strengthening CT output while weakening CC synaptic signaling.

Journal ArticleDOI
TL;DR: This short review will outline the known synaptic interactions of CRMP2 and illustrate its role in synaptic transmission, thereby introducingCRMP2 as a prospective target for the pathophysiological modulation of aberrant synaptic activity.

Proceedings ArticleDOI
07 Jun 2020
TL;DR: A comprehensive channel model for synaptic DMC encompassing a spatial model of the synaptic cleft, molecule re-uptake at the presynaptic neuron, and reversible binding to individual receptors at the postsynaptic neuron is developed.
Abstract: In Diffusive Molecular Communication (DMC), information is transmitted by diffusing molecules. Synaptic signaling is a natural implementation of this paradigm. It is responsible for relaying information from one neuron to another, but also provides support for complex functionalities, such as learning and memory. Many of its features are not yet understood, some are, however, known to be critical for robust, reliable neural communication. In particular, some synapses feature a re-uptake mechanism at the presynaptic neuron, which provides a means for removing neurotransmitters from the synaptic cleft and for recycling them for future reuse. In this paper, we develop a comprehensive channel model for synaptic DMC encompassing a spatial model of the synaptic cleft, molecule re-uptake at the presynaptic neuron, and reversible binding to individual receptors at the postsynaptic neuron. Based on this model, we derive an analytical time domain expression for the channel impulse response (CIR) of the synaptic DMC system. Our model explicitly incorporates macroscopic physical channel parameters and can be used to evaluate the impact of re-uptake, receptor density, and channel width on the CIR of the synaptic DMC system. Furthermore, we provide results from particlebased computer simulation, which validate the analytical model. The proposed comprehensive channel model for synaptic DMC systems can be exploited for the investigation of challenging problems, like the quantification of the inter-symbol interference between successive synaptic signals and the design of synthetic neural communication systems.

Journal ArticleDOI
TL;DR: The data indicate that the phenotypic spectrum of female Cask-/- mice includes sporadic seizures and thus closely parallels that of CASK haploinsufficient girls; the Cask+/- mouse is thus a face-validated model for CASK-related pathologies.

Journal ArticleDOI
TL;DR: A new class of multimodal, bioresponsive Ca(II) magnetic resonance agents that are coupled to the NIR probe IR-783, which targets organic anion transporter polypeptides and provides histological validation of the MR signal using NIR fluorescence imaging.
Abstract: Ca(II) ions are critical for the proper function of neurons by contributing to synaptic signaling and regulating neuronal plasticity. Dysregulation of Ca(II) is associated with a number of pathologies that cause neurodegeneration, therefore the ability to monitor Ca(II) intracellularly is an important target for molecular imaging. Contrast-enhanced MR imaging is a promising modality for imaging changes in Ca(II) concentrations; however, the majority of Ca(II) responsive MR agents are limited to the extracellular space or hindered by poor cellular uptake. Here, we describe a new class of multimodal, bioresponsive Ca(II) magnetic resonance agents that are coupled to the NIR probe IR-783. This new design is based on previous generations of our Ca(II) MR agents but overcomes two significant challenges: 1) the presence of the NIR probe dramatically increases cellular uptake of the agent and 2) provides histological validation of the MR signal using NIR fluorescence imaging. IR-783 targets organic anion transpo...

Journal ArticleDOI
TL;DR: This study probes how subunit-selective ligands affect activation and desensitization of heteromeric iGluRs and provides mechanistic insight into ligand dissociation, which has direct pharmacologic implications for the use of sub unit- selective antagonists in neuroscience research and envisioned therapeutic interventions.
Abstract: Ionotropic glutamate receptors (iGluRs) are key molecules for synaptic signaling in the central nervous system, which makes them promising drug targets. Intensive efforts are being devoted to the development of subunit-selective ligands, which should enable more precise pharmacologic interventions while limiting the effects on overall neuronal circuit function. However, many AMPA and kainate receptor complexes in vivo are heteromers composed of different subunits. Despite their importance, little is known about how subunit-selective ligands affect the gating of heteromeric iGluRs, namely their activation and desensitization properties. Using fast ligand application experiments, we studied the effects of competitive antagonists that block glutamate from binding at part of the four subunits. We found that UBP-310, a kainate receptor antagonist with high selectivity for GluK1 subunits, reduces the desensitization of GluK1/GluK2 heteromers and fully abolishes the desensitization of GluK1/GluK5 heteromers. This effect is mirrored by subunit-selective agonists and heteromeric receptors that contain binding-impaired subunits, as we show for both kainate and GluA2 AMPA receptors. These findings are consistent with a model in which incomplete agonist occupancy at the four receptor subunits can provide activation without inducing desensitization. However, we did not detect significant steady-state currents during UBP-310 dissociation from GluK1 homotetramers, indicating that antagonist dissociation proceeds in a nonuniform and cooperativity-driven manner, which disfavors nondesensitizing occupancy states. Besides providing mechanistic insights, these results have direct implications for the use of subunit-selective antagonists in neuroscience research and envisioned therapeutic interventions.

Posted ContentDOI
14 Aug 2020-bioRxiv
TL;DR: This work provides a mathematical framework that specifies the growth of a brain network over developmental time and provides a unifying computational framework for conceptualizing the mechanisms and diversity of childhood brain development, capable of integrating different levels of analysis – from genes to cognition.
Abstract: The emergence of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms govern the diversity of these developmental processes? There are many existing descriptive theories, but to date none are computationally formalized. We provide a mathematical framework that specifies the growth of a brain network over developmental time. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over development. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the developmental simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity of childhood brain development, capable of integrating different levels of analysis – from genes to cognition.