scispace - formally typeset
Search or ask a question

Showing papers on "Thalamus published in 2012"


Journal ArticleDOI
TL;DR: The etiology of schizophrenia may disrupt the development of prefrontal-thalamic connectivity and refinement of somatomotor connectivity with the thalamus that occurs during brain maturation, establishing differential abnormalities of thalamocortical networks in schizophrenia.
Abstract: ObjectiveThe thalamus and cerebral cortex are connected via topographically organized, reciprocal connections. Previous studies have revealed thalamic abnormalities in schizophrenia; however, it is not known whether thalamocortical networks are differentially affected in the disorder. To explore this possibility, the authors examined functional connectivity in intrinsic low-frequency blood-oxygen-level-dependent (BOLD) signal fluctuations between major divisions of the cortex and thalamus using resting-state functional MRI (fMRI).MethodSeventy-seven healthy subjects and 62 patients with schizophrenia underwent resting-state fMRI. To identify functional subdivisions of the thalamus, the authors parceled the cortex into six regions of interest: the prefrontal cortex, motor cortex/supplementary motor area, somatosensory cortex, temporal lobe, posterior parietal cortex, and occipital lobe. Mean BOLD time series were extracted for each region of interest and entered into a seed-based functional connectivity an...

411 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the desynchronized cortical state during active behavior is driven by a centrally generated increase in thalamic action potential firing, which can be mimicked by optogenetic stimulation of the thalamus, which is key in controlling cortical states.
Abstract: We investigated the impact of thalamus on ongoing cortical activity in the awake, behaving mouse. We demonstrate that the desynchronized cortical state during active behavior is driven by a centrally generated increase in thalamic action potential firing, which can also be mimicked by optogenetic stimulation of the thalamus. The thalamus therefore is key in controlling cortical states.

294 citations


Journal ArticleDOI
TL;DR: A significant effect of prematurity on thalamic development that is related to abnormalities in allied brain structures is demonstrated, suggesting that preterm delivery disrupts specific aspects of cerebral development, such as the thalamocortical system.
Abstract: Preterm birth is a leading cause of cognitive impairment in childhood and is associated with cerebral gray and white matter abnormalities Using multimodal image analysis, we tested the hypothesis that altered thalamic development is an important component of preterm brain injury and is associated with other macro- and microstructural alterations T(1)- and T(2)-weighted magnetic resonance images and 15-direction diffusion tensor images were acquired from 71 preterm infants at term-equivalent age Deformation-based morphometry, Tract-Based Spatial Statistics, and tissue segmentation were combined for a nonsubjective whole-brain survey of the effect of prematurity on regional tissue volume and microstructure Increasing prematurity was related to volume reduction in the thalamus, hippocampus, orbitofrontal lobe, posterior cingulate cortex, and centrum semiovale After controlling for prematurity, reduced thalamic volume predicted: lower cortical volume; decreased volume in frontal and temporal lobes, including hippocampus, and to a lesser extent, parietal and occipital lobes; and reduced fractional anisotropy in the corticospinal tracts and corpus callosum In the thalamus, reduced volume was associated with increased diffusivity This demonstrates a significant effect of prematurity on thalamic development that is related to abnormalities in allied brain structures This suggests that preterm delivery disrupts specific aspects of cerebral development, such as the thalamocortical system

284 citations


Journal ArticleDOI
TL;DR: Authors highlight novel connectivity, such as supero-lateral-branch MFB and ATR convergence, caudally as well as rostrally, in the anterior limb of the internal capsule and medial prefrontal cortex that may sustain a dynamic equilibrium between positive and negative affective states in human mood-regulation and its various disorders.
Abstract: The medial forebrain bundle (MFB), a key structure of reward-seeking circuitry, remains inadequately characterized in humans despite its vast importance for emotional processing and development of addictions and depression. Using Diffusion Tensor Imaging Fiber Tracking (DTI FT) the authors describe potential converging ascending and descending MFB and anterior thalamic radiation (ATR) that may mediate major brain reward-seeking and punishment functions. Authors highlight novel connectivity, such as supero-lateral-branch MFB and ATR convergence, caudally as well as rostrally, in the anterior limb of the internal capsule and medial prefrontal cortex. These anatomical convergences may sustain a dynamic equilibrium between positive and negative affective states in human mood-regulation and its various disorders, especially evident in addictions and depression.

268 citations


Journal ArticleDOI
TL;DR: Serum levels of UCH-L1 appear to have potential clinical utility in diagnosing TBI, including correlating to injury severity and survival outcome, and distinguish severe TBI survivors from nonsurvivors within the study.
Abstract: BACKGROUND: The ventrolateral thalamus (ventral intermediate nucleus [ Vim]) is the traditional target for neurosurgical treatment of essential tremor. The target, however, has varied substantially ...

262 citations


Journal ArticleDOI
TL;DR: Lateral pulvinar is able to powerfully control and gate information outflow from V1, and its effect on supra-granular layers of V1 that project to higher visual cortex is assessed.
Abstract: The primary visual cortex (V1) receives its driving input from the eyes via the lateral geniculate nucleus (LGN) of the thalamus. The lateral pulvinar nucleus of the thalamus also projects to V1, but this input is not well understood. We manipulated lateral pulvinar neural activity in prosimian primates and assessed the effect on supra-granular layers of V1 that project to higher visual cortex. Reversibly inactivating lateral pulvinar prevented supra-granular V1 neurons from responding to visual stimulation. Reversible, focal excitation of lateral pulvinar receptive fields increased the visual responses in coincident V1 receptive fields fourfold and shifted partially overlapping V1 receptive fields toward the center of excitation. V1 responses to regions surrounding the excited lateral pulvinar receptive fields were suppressed. LGN responses were unaffected by these lateral pulvinar manipulations. Excitation of lateral pulvinar after LGN lesion activated supra-granular layer V1 neurons. Thus, lateral pulvinar is able to powerfully control and gate information outflow from V1.

198 citations


Journal ArticleDOI
TL;DR: It is found that matrix TC projections to L1 could transmit relatively strong, fast, high-fidelity synaptic signals, consistent with the sort of persistent activation observed during working memory and potentially applicable to state-dependent regulation of excitability.
Abstract: Knowledge of thalamocortical (TC) processing comes mainly from studying core thalamic systems that project to middle layers of primary sensory cortices. However, most thalamic relay neurons comprise a matrix of cells that are densest in the "nonspecific" thalamic nuclei and usually target layer 1 (L1) of multiple cortical areas. A longstanding hypothesis is that matrix TC systems are crucial for regulating neocortical excitability during changing behavioral states, yet we know almost nothing about the mechanisms of such regulation. It is also unclear whether synaptic and circuit mechanisms that are well established for core sensory TC systems apply to matrix TC systems. Here we describe studies of thalamic matrix influences on mouse prefrontal cortex using optogenetic and in vitro electrophysiology techniques. Channelrhodopsin-2 was expressed in midline and paralaminar (matrix) thalamic neurons, and their L1-projecting TC axons were activated optically. Contrary to conventional views, we found that matrix TC projections to L1 could transmit relatively strong, fast, high-fidelity synaptic signals. L1 TC projections preferentially drove inhibitory interneurons of L1, especially those of the late-spiking subtype, and often triggered feedforward inhibition in both L1 interneurons and pyramidal cells of L2/L3. Responses during repetitive stimulation were far more sustained for matrix than for core sensory TC pathways. Thus, matrix TC circuits appear to be specialized for robust transmission over relatively extended periods, consistent with the sort of persistent activation observed during working memory and potentially applicable to state-dependent regulation of excitability.

195 citations


Journal ArticleDOI
TL;DR: The data demonstrate that expected value and attentional demands are integrated in cortico-striatal-thalamic circuits in coordination with the dopaminergic midbrain to flexibly modulate resource allocation for an effective pursuit of behavioral goals.
Abstract: Reward has been shown to promote human performance in multiple task domains. However, an important debate has developed about the uniqueness of reward-related neural signatures associated with such facilitation, as similar neural patterns can be triggered by increased attentional focus independent of reward. Here, we used functional magnetic resonance imaging to directly investigate the neural commonalities and interactions between the anticipation of both reward and task difficulty, by independently manipulating these factors in a cued-attention paradigm. In preparation for the target stimulus, both factors increased activity within the midbrain, dorsal striatum, and fronto-parietal areas, while inducing deactivations in default-mode regions. Additionally, reward engaged the ventral striatum, posterior cingulate, and occipital cortex, while difficulty engaged medial and dorsolateral frontal regions. Importantly, a network comprising the midbrain, caudate nucleus, thalamus, and anterior midcingulate cortex exhibited an interaction between reward and difficulty, presumably reflecting additional resource recruitment for demanding tasks with profitable outcome. This notion was consistent with a negative correlation between cue-related midbrain activity and difficulty-induced performance detriments in reward-predictive trials. Together, the data demonstrate that expected value and attentional demands are integrated in cortico-striatal-thalamic circuits in coordination with the dopaminergic midbrain to flexibly modulate resource allocation for an effective pursuit of behavioral goals.

183 citations


Journal ArticleDOI
TL;DR: The results suggest on one hand that the modulatory cortical networks involved in PA largely overlap those involved in the regulation of emotional processes, and on the other that brain nociceptive networks are downregulated in parallel with behavioral analgesia.
Abstract: Placebo analgesia (PA) is one of the most studied placebo effects Brain imaging studies pub- lished over the last decade, using either positron emission tomography (PET) or functional magnetic resonance imaging (fMRI), suggest that multiple brain regions may play a pivotal role in this process However, there continues to be much debate as to which areas consistently contribute to placebo anal- gesia-related networks In the present study, we used activation likelihood estimation (ALE) meta-anal- ysis, a state-of-the-art approach, to search for the cortical areas involved in PA in human experimental pain models Nine fMRI studies and two PET studies investigating cerebral hemodynamic changes were included in the analysis During expectation of analgesia, activated foci were found in the left an- terior cingulate, right precentral, and lateral prefrontal cortex and in the left periaqueductal gray (PAG) During noxious stimulation, placebo-related activations were detected in the anterior cingulate and medial and lateral prefrontal cortices, in the left inferior parietal lobule and postcentral gyrus, an- terior insula, thalamus, hypothalamus, PAG, and pons; deactivations were found in the left mid- and posterior cingulate cortex, superior temporal and precentral gyri, in the left anterior and right posterior insula, in the claustrum and putamen, and in the right thalamus and caudate body Our results sug- gest on one hand that the modulatory cortical networks involved in PA largely overlap those involved in the regulation of emotional processes, on the other that brain nociceptive networks are downregu- lated in parallel with behavioral analgesia Hum Brain Mapp 00:000-000, 2011 V C 2011 Wiley Periodicals, Inc

179 citations


Journal ArticleDOI
TL;DR: Functional divisions of the medial SFC are examined on the basis of the "correlograms" of resting-state functional magnetic resonance imaging data of 225 adult individuals and elucidated functional connectivities of anterior preSMA-the most anterior part of the anterior SFC.
Abstract: The medial superior frontal cortex (SFC), including the supplementary motor area (SMA) and presupplementary motor area (preSMA), is implicated in movement and cognitive control, among other functions central to decision making. Previous studies delineated the anatomical boundaries and functional connectivity of the SMA. However, it is unclear whether the preSMA, which responds to a variety of behavioral tasks, comprises functionally distinct areas. With 24 seed regions systematically demarcated throughout the anterior and posterior medial SFC, we examined here the functional divisions of the medial SFC on the basis of the “correlograms” of resting-state functional magnetic resonance imaging data of 225 adult individuals. In addition to replicating segregation of the SMA and posterior preSMA, the current results elucidated functional connectivities of anterior preSMA—the most anterior part of the medial SFC. In contrast to the caudal medial SFC, the anterior preSMA is connected with most of the prefrontal but not with somatomotor areas. Overall, the SMA is strongly connected to the thalamus and epithalamus, the posterior preSMA to putamen, pallidum, and subthalamic nucleus, and anterior preSMA to the caudate, with the caudate showing significant hemispheric asymmetry. These findings may provide a useful platform for future studies to investigate frontal cortical functions.

174 citations


Journal ArticleDOI
TL;DR: The results of the present tracing study clearly show that more neurons in the prefrontal cortex and subiculum project to the PVT than neurons from the hypothalamus and brainstem, highlighting the potential importance of top–down modulation of PVT mechanisms and behavioral functions.
Abstract: The paraventricular nucleus of the thalamus (PVT) is part of a group of midline and intralaminar thalamic nuclei implicated in arousal and attention. Recent research points to anatomical and functional differences between the anterior (aPVT) and posterior PVT (pPVT). The present study re-examines the main sources of brain inputs to the aPVT and pPVT in the rat following iontophoretic injections of the retrograde tracer cholera toxin B (CTb) in the PVT. The location and the number of retrogradely labeled neurons in different regions of the brain were examined to determine which brain areas are likely to exert a strong influence on the aPVT and pPVT. The largest number of labeled neurons was found in layer 6 of the prelimbic, infralimbic and posterior insular cortices following injections in the pPVT. In contrast, the largest number of labeled neurons following injections of CTb in the aPVT was found to be in the hippocampal subiculum and the prelimbic cortex. Other areas of the brain including the reticular nucleus of the thalamus, periaqueductal gray, parabrachial nucleus and dorsomedial nucleus of the hypothalamus were found to contain a more moderate number of neurons following injections of CTb in either the aPVT or pPVT. The results of the present tracing study clearly show that more neurons in the prefrontal cortex and subiculum project to the PVT than neurons from the hypothalamus and brainstem. These results highlight the potential importance of top-down modulation of PVT mechanisms and behavioral functions.

Journal ArticleDOI
TL;DR: How evolutionary conserved and newly acquired features of the developing and adult zebrafish thalamus can be compared to the mammalian situation is discussed.
Abstract: Current research on the thalamus and related structures in the zebrafish diencephalon identifies an increasing number of both neurological structures and ontogenetic processes as evolutionary conserved between teleosts and mammals. The patterning processes, for example, which during the embryonic development of zebrafish form the thalamus proper appear largely conserved. Yet also striking differences between zebrafish and other vertebrates have been observed, particularly when we look at mature and histologically differentiated brains. A case in point is the migrated preglomerular complex of zebrafish which evolved only within the lineage of ray-finned fish and has no counterpart in mammals or tetrapod vertebrates. Based on its function as a sensory relay station with projections to pallial zones, the preglomerular complex has been compared to specific thalamic nuclei in mammals. However, no thalamic projections to the zebrafish dorsal pallium, which corresponds topologically to the mammalian isocortex, have been identified. Merely one teleostean thalamic nucleus proper, the auditory nucleus, projects to a part of the dorsal telencephalon, the pallial amygdala. Studies on patterning mechanisms identify a rostral and caudal domain in the embryonic thalamus proper. In both, teleosts and mammals, the rostral domain gives rise to GABAergic neurons, whereas glutamatergic neurons originate in the caudal domain of the zebrafish thalamus. The distribution of GABAergic derivatives in the adult zebrafish brain, furthermore, revealed previously overlooked thalamic nuclei and redefined already established ones. These findings require some reconsideration regarding the topological origin of these adult structures. In what follows, I discuss how evolutionary conserved and newly acquired features of the developing and adult zebrafish thalamus can be compared to the mammalian situation.

Journal ArticleDOI
10 May 2012-Brain
TL;DR: Results are consistent with the longstanding hypothesis that circuits involving the basal ganglia and thalamus are disinhibited in Tourette syndrome patients, and abnormalities in GABA(A) receptor binding in the insula and cerebellum appear particularly noteworthy based upon recent evidence implicating these structures in the generation of tics.
Abstract: Dysfunction of the γ-aminobutyric acid-ergic system in Tourette syndrome may conceivably underlie the symptoms of motor disinhibition presenting as tics and psychiatric manifestations, such as attention deficit hyperactivity disorder and obsessive–compulsive disorder. The purpose of this study was to identify a possible dysfunction of the γ-aminobutyric acid-ergic system in Tourette patients, especially involving the basal ganglia-thalamo-cortical circuits and the cerebellum. We studied 11 patients with Tourette syndrome and 11 healthy controls. Positron emission tomography procedure: after injection of 20 mCi of [11C]flumazenil, dynamic emission images of the brain were acquired. Structural magnetic resonance imaging scans were obtained to provide an anatomical framework for the positron emission tomography data analysis. Images of binding potential were created using the two-step version of the simplified reference tissue model. The binding potential images then were spatially normalized, smoothed and compared between groups using statistical parametric mapping. We found decreased binding of GABAA receptors in Tourette patients bilaterally in the ventral striatum, globus pallidus, thalamus, amygdala and right insula. In addition, the GABAA receptor binding was increased in the bilateral substantia nigra, left periaqueductal grey, right posterior cingulate cortex and bilateral cerebellum. These results are consistent with the longstanding hypothesis that circuits involving the basal ganglia and thalamus are disinhibited in Tourette syndrome patients. In addition, the abnormalities in GABAA receptor binding in the insula and cerebellum appear particularly noteworthy based upon recent evidence implicating these structures in the generation of tics. * Abbreviations : BPND : binding potential GABA : γ-aminobutyric acid SN : substantia nigra

Journal ArticleDOI
21 Nov 2012-Neuron
TL;DR: The results suggest that dLGN maintains and sharpens retinal direction selectivity and integrates opposing DSRGC subtypes in a functional-anatomical region, perhaps forming a feature representation for horizontal-axis motion, contrary to dL GN being a simple relay.

Journal ArticleDOI
TL;DR: It is argued that a detailed understanding of the biology of TC neurons is critical to understand the role of the thalamus in normal and pathological perception, voluntary movement, cognition and attention.
Abstract: Our current understanding of thalamocortical (TC) circuits is largely based on studies investigating so-called 'specific' thalamic nuclei, which receive and transmit sensory-triggered input to specific cortical target areas. TC neurons in these nuclei have a striking point-to-point topography and a stereotyped laminar pattern of termination in the cortex, which has made them ideal models to study the organization, plasticity, and development of TC circuits. However, despite their experimental importance, neurons within these nuclei only represent a fraction of all thalamic neurons and do not reflect the diversity of the TC neuron population. Here we review the distinct subtypes of projection neurons that populate the thalamus, both within and across anatomically-defined nuclei, with regard to differences in their morphology, input/output connectivity and target specificity, as well as more recent findings on their neuron type-specific gene expression and development. We argue that a detailed understanding of the biology of TC neurons is critical to understand the role of the thalamus in normal and pathological perception, voluntary movement, cognition and attention.

Journal ArticleDOI
TL;DR: The present findings indicate that RE is critically positioned to influence the HF and mPFC, and their associated behaviors, via separate or collateral projections to these sites.
Abstract: The nucleus reuniens (RE) of the midline thalamus has been shown to strongly innervate structures of the limbic forebrain, prominently including the hippocampus (HF) and the medial prefrontal cortex (mPFC) and to exert pronounced excitatory effects on HF and mPFC. It was unknown, however, whether RE projections to, and hence actions on, the HF and mPFC originate from a common or largely separate groups of RE neurons. Using fluorescent retrograde tracing techniques, we examined the patterns of distribution of RE cells projecting to HF, to the mPFC or to both sites via axon collaterals. Specifically, injections of the retrograde tracers Fluorogold (FG) or Fluororuby (FR) were made in the mPFC and in various subfields of HF and patterns of single (FG or FR) or double labeled (FG + FR) cells in RE were determined. Pronounced numbers of (single) labeled neurons were present throughout RE with FG or FR injections, and although intermingled in RE, cells projecting to the mPFC were preferentially distributed along the midline or in the perireuniens nucleus (pRE), whereas those projecting to HF occupied a wide mediolateral cross sectional area of RE lying between cells projecting to the mPFC. Approximately, tenfold more labeled cells were present in RE with ventral compared to dorsal CA1 injections. Like single labeled neurons, double labeled cells were found throughout RE, but were most densely concentrated in areas of greatest overlap of FG+ and FR+ neurons or mainly in the lateral one-third of RE, medial to pRE. Depending on specific combinations of injections, double labeled cells ranged from approximately 3–9% of the labeled neurons. The nucleus reuniens has been shown to be a vital link in limbic subcortical–cortical communication and recent evidence indicates a direct RE involvement in hippocampal and medial prefrontal cortical-dependent behaviors. The present findings indicate that RE is critically positioned to influence the HF and mPFC, and their associated behaviors, via separate or collateral projections to these sites.

Journal ArticleDOI
TL;DR: It is concluded that in the unfolding of this “novel,” several molecular, cellular, and pharmacologic mechanisms that govern forebrain excitability, and thus consciousness, during the awake state and sleep are discovered.
Abstract: Summary This review summarizes the findings obtained over the past 70 years on the fundamental mechanisms underlying generalized spike-wave (SW) discharges associated with absence seizures Thalamus and cerebral cortex are the brain areas that have attracted most of the attention from both clinical and experimental researchers However, these studies have often favored either one or the other structure in playing a major role, thus leading to conflicting interpretations Beginning with Jasper and Penfield’s topistic view of absence seizures as the result of abnormal functions in the so-called centrencephalon, we witness the naissance of a broader concept that considered both thalamus and cortex as equal players in the process of SW discharge generation Furthermore, we discuss how recent studies have identified fine changes in cortical and thalamic excitability that may account for the expression of absence seizures in naturally occurring genetic rodent models and knockout mice The end of this fascinating tale is presumably far from being written However, I can confidently conclude that in the unfolding of this “novel,” we have discovered several molecular, cellular, and pharmacologic mechanisms that govern forebrain excitability, and thus consciousness, during the awake state and sleep

Journal ArticleDOI
TL;DR: It is found that, during the formation of the mouse barrel cortex, NG2 cells received glutamatergic synapses from thalamocortical fibers and preferentially accumulated along septa separating the barrels.
Abstract: We found that, during the formation of the mouse barrel cortex, NG2 cells received glutamatergic synapses from thalamocortical fibers and preferentially accumulated along septa separating the barrels. Sensory deprivation reduced thalamocortical inputs on NG2 cells and increased their proliferation, leading to a more uniform distribution in the deprived barrels. Thus, early sensory experience regulates thalamocortical innervation on NG2 cells, as well as their proliferation and distribution during development.

Journal ArticleDOI
24 May 2012-Neuron
TL;DR: It is shown that thalamocortical inputs themselves undergo massive plasticity in adults, raising the possibility that the axons of other subcortical structures might also remain in flux throughout life.

Journal ArticleDOI
01 Dec 2012-Pain
TL;DR: The present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation‐induced antinociception.
Abstract: Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, δ-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception.

Journal ArticleDOI
TL;DR: Results show that pruriceptive information is encoded by polymodal STT neurons in histaminergic or nonhistaminergic pathways and transmitted to the ventrobasal complex and posterior thalamus in primates.
Abstract: Itch of peripheral origin requires information transfer from the spinal cord to the brain for perception. Here, primate spinothalamic tract (STT) neurons from lumbar spinal cord were functionally characterized by in vivo electrophysiology to determine the role of these cells in the transmission of pruriceptive information. One hundred eleven STT neurons were identified by antidromic stimulation and then recorded while histamine and cowhage (a nonhistaminergic pruritogen) were sequentially applied to the cutaneous receptive field of each cell. Twenty percent of STT neurons responded to histamine, 13% responded to cowhage, and 2% responded to both. All pruriceptive STT neurons were mechanically sensitive and additionally responded to heat, intradermal capsaicin, or both. STT neurons located in the superficial dorsal horn responded with greater discharge and longer duration to pruritogens than STT neurons located in the deep dorsal horn. Pruriceptive STT neurons discharged in a bursting pattern in response to the activating pruritogen and to capsaicin. Microantidromic mapping was used to determine the zone of termination for pruriceptive STT axons within the thalamus. Axons from histamine-responsive and cowhage-responsive STT neurons terminated in several thalamic nuclei including the ventral posterior lateral, ventral posterior inferior, and posterior nuclei. Axons from cowhage-responsive neurons were additionally found to terminate in the suprageniculate and medial geniculate nuclei. Histamine-responsive STT neurons were sensitized to gentle stroking of the receptive field after the response to histamine, suggesting a spinal mechanism for alloknesis. The results show that pruriceptive information is encoded by polymodal STT neurons in histaminergic or nonhistaminergic pathways and transmitted to the ventrobasal complex and posterior thalamus in primates.

Journal ArticleDOI
TL;DR: The aim here is to review recent observations of cellular and molecular mechanisms related to: the growth of thalamic axon avoidance of the hypothalamus and extension into the telencephalon to form the internal capsule, the crossing of the pallial–subpallial boundary, and the growth towards the cerebral cortex.
Abstract: Thalamocortical axons must cross a complex cellular terrain through the developing forebrain, and this terrain has to be understood for us to learn how thalamocortical axons reach their destinations. Selective fasciculation, guidepost cells and various diencephalic and telencephalic gradients have been implicated in thalamocortical guidance. As our understanding of the relevant forebrain patterns has increased, so has our knowledge of the guidance mechanisms. Our aim here is to review recent observations of cellular and molecular mechanisms related to: the growth of thalamofugal projections to the ventral telencephalon, thalamic axon avoidance of the hypothalamus and extension into the telencephalon to form the internal capsule, the crossing of the pallial-subpallial boundary, and the growth towards the cerebral cortex. We shall review current theories for the explanation of the maintenance and alteration of topographic order in the thalamocortical projections to the cortex. It is now increasingly clear that several mechanisms are involved at different stages of thalamocortical development, and each contributes substantially to the eventual outcome. Revealing the molecular and cellular mechanisms can help to link specific genes to details of actual developmental mechanisms.

Journal ArticleDOI
22 Aug 2012-PLOS ONE
TL;DR: The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA, and are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices.
Abstract: It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex (mPFC). Such a proposal predicts that damage to these regions should disrupt or even abolish SA. We tested this prediction in a rare neurological patient with extensive bilateral brain damage encompassing the insula, ACC, mPFC, and the medial temporal lobes. In spite of severe amnesia, which partially affected his “autobiographical self”, the patient's SA remained fundamentally intact. His Core SA, including basic self-recognition and sense of self-agency, was preserved. His Extended SA and Introspective SA were also largely intact, as he has a stable self-concept and intact higher-order metacognitive abilities. The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA. Our findings are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices.

Journal ArticleDOI
TL;DR: The results of this study suggest that atrophy of the frontal thalamo-cortical unit may explain, at least in part, disorders of attention, working memory and executive function associated with increasing age.

Journal ArticleDOI
TL;DR: The degree and distribution of thalamic pathology relates to the topography and extent of neocortical atrophy, lending support to the concept that the thalamus is an important hub in the pathologic network of TLE.
Abstract: Objective: Although experimental work has provided evidence that the thalamus is a crucial relay structure in temporal lobe epilepsy (TLE), the relation of the thalamus to neocortical pathology remains unclear. To assess thalamocortical network pathology in TLE, we mapped pointwise patterns of thalamic atrophy and statistically related them to neocortical thinning. Methods: We studied cross-sectionally 36 patients with drug-resistant TLE and 19 age- and sex-matched healthy control subjects using high-resolution MRI. To localize thalamic pathology, we converted manual labels into surface meshes using the spherical harmonic description and calculated local deformations relative to a template. In addition, we measured cortical thickness by means of the constrained Laplacian anatomic segmentation using proximity algorithm. Results: Compared with control subjects, patients with TLE showed ipsilateral thalamic atrophy that was located along the medial surface, encompassing anterior, medial, and posterior divisions. Unbiased analysis correlating the degree of medial thalamic atrophy with cortical thickness measurements mapped bilateral frontocentral, lateral temporal, and mesiotemporal cortices. These areas overlapped with those of cortical thinning found when patients were compared with control subjects. Thalamic atrophy intensified with a longer duration of epilepsy and was more severe in patients with a history of febrile convulsions. Conclusion: The degree and distribution of thalamic pathology relates to the topography and extent of neocortical atrophy, lending support to the concept that the thalamus is an important hub in the pathologic network of TLE.

Journal ArticleDOI
TL;DR: It is hypothesize that transient circuits during embryonic and early postnatal development are critical in the matching of the cortical and thalamic representations and forming the cortical circuits in the mature brain.
Abstract: In this review we discuss recent advances in the understanding of corticothalamic axon guidance; patterning of the early telencephalon, the sequence and choreography of the development of projections from subplate, layers 5 and 6. These cortical subpopulations display different axonal outgrowth kinetics and innervate distinct thalamic nuclei in a temporal pattern determined by cortical layer identity and subclass specificity. Guidance by molecular cues, structural cues, and activity-dependent mechanisms contribute to this development. There is a substantial rearrangement of the corticofugal connectivity outside the thalamus at the border of and within the reticular thalamic nucleus, a region that shares some of the characteristics of the cortical subplate during development. The early transient circuits are not well understood, nor the extent to which this developmental pattern may be driven by peripheral sensory activity. We hypothesize that transient circuits during embryonic and early postnatal development are critical in the matching of the cortical and thalamic representations and forming the cortical circuits in the mature brain.

Journal ArticleDOI
TL;DR: Investigation of neuronal pathways modulated by therapeutic, sub-therapeutic and paresthesia-inducing DBS settings in three patients with essential tremor found superior targeting of the cerebello-thalamo-cortical pathway was demonstrated.
Abstract: Deep brain stimulation (DBS) in the ventral intermediate nucleus of thalamus (Vim) is known to exert a therapeutic effect on postural and kinetic tremor in patients with essential tremor (ET). For DBS leads implanted near the caudal border of Vim, however, there is an increased likelihood that one will also induce paresthesia side-effects by stimulating neurons within the sensory pathway of the ventral caudal (Vc) nucleus of thalamus. The aim of this computational study was to (1) investigate the neuronal pathways modulated by therapeutic, sub-therapeutic and paresthesia-inducing DBS settings in three patients with ET and (2) determine how much better an outcome could have been achieved had these patients been implanted with a DBS lead containing directionally segmented electrodes (dDBS). Multi-compartment neuron models of the thalamocortical, cerebellothalamic and medial lemniscal pathways were first simulated in the context of patient-specific anatomies, lead placements and programming parameters from three ET patients who had been implanted with Medtronic 3389 DBS leads. The models showed that in these patients, complete suppression of tremor was associated most closely with activating an average of 62% of the cerebellothalamic afferent input into Vim (n = 10), while persistent paresthesias were associated with activating 35% of the medial lemniscal tract input into Vc thalamus (n = 12). The dDBS lead design demonstrated superior targeting of the cerebello-thalamo-cortical pathway, especially in cases of misaligned DBS leads. Given the close proximity of Vim to Vc thalamus, the models suggest that dDBS will enable clinicians to more effectively sculpt current through and around thalamus in order to achieve a more consistent therapeutic effect without inducing side-effects.

Journal ArticleDOI
TL;DR: The results show that distinctThalamic territories can be under pure subcortical or cortical control; however, there is significant variability in the composition of major excitatory inputs in several thalamic regions.
Abstract: The activity of thalamocortical neurons is primarily determined by giant excitatory terminals, called drivers. These afferents may arise from neocortex or from subcortical centers; however, their exact distribution, segregation, or putative absence in given thalamic nuclei are unknown. To unravel the nucleus-specific composition of drivers, we mapped the entire macaque thalamus using vesicular glutamate transporters 1 and 2 to label cortical and subcortical afferents, respectively. Large thalamic territories were innervated exclusively by either giant vGLUT2- or vGLUT1-positive boutons. Codistribution of drivers with different origin was not abundant. In several thalamic regions, no giant terminals of any type could be detected at light microscopic level. Electron microscopic observation of these territories revealed either the complete absence of large multisynaptic excitatory terminals (basal ganglia-recipient nuclei) or the presence of both vGLUT1- and vGLUT2-positive terminals, which were significantly smaller than their giant counterparts (intralaminar nuclei, medial pulvinar). In the basal ganglia-recipient thalamus, giant inhibitory terminals replaced the excitatory driver inputs. The pulvinar and the mediodorsal nucleus displayed subnuclear heterogeneity in their driver assemblies. These results show that distinct thalamic territories can be under pure subcortical or cortical control; however, there is significant variability in the composition of major excitatory inputs in several thalamic regions. Because thalamic information transfer depends on the origin and complexity of the excitatory inputs, this suggests that the computations performed by individual thalamic regions display considerable variability. Finally, the map of driver distribution may help to resolve the morphological basis of human diseases involving different parts of the thalamus.

Journal ArticleDOI
TL;DR: It is found that a systemic NMDAR antagonist (ketamine; 50 mg/kg) increased the firing rate of cells in the reuniens and CA1 in awake rats and increased the power of delta oscillations in both structures, indicating at least two mechanisms for ketamine action on the hippocampus.
Abstract: Work on schizophrenia demonstrates the involvement of the hippocampus in the disease and points specifically to hyperactivity of CA1. Many symptoms of schizophrenia can be mimicked by N-methyl-d-aspartate receptor (NMDAR) antagonist; notably, delta frequency oscillations in the awake state are enhanced in schizophrenia, an abnormality that can be mimicked by NMDAR antagonist action in the thalamus. Given that CA1 receives input from the nucleus reuniens of the thalamus, we sought to determine whether an NMDAR antagonist in the thalamus can affect hippocampal processes. We found that a systemic NMDAR antagonist (ketamine; 50 mg/kg) increased the firing rate of cells in the reuniens and CA1 in awake rats. Furthermore, ketamine increased the power of delta oscillations in both structures. The thalamic origin of the change in hippocampal properties was demonstrated in three ways: 1) oscillations in the two structures were coherent; 2) the hippocampal changes induced by systematic ketamine were reduced by thalamic injection of muscimol; and 3) the hippocampal changes could be induced by local injection of ketamine into the thalamus. Lower doses of ketamine (20 mg/kg) did not evoke delta oscillations but did increase hippocampal gamma power, an effect not dependent on the thalamus. There are thus at least two mechanisms for ketamine action on the hippocampus: a low-dose mechanism that affects gamma through a nonthalamic mechanism and a high-dose mechanism that increases CA1 activity and delta oscillations as a result of input from the thalamus. Both mechanisms may be important in producing symptoms of schizophrenia.

Journal ArticleDOI
01 Aug 2012-Brain
TL;DR: The high odds ratio at the ventral posterior nucleus-pulvinar border zone indicates that this area is crucial in the pathogenesis of thalamic pain and demonstrates the feasibility of identifying patients at risk of developing central post-stroke pain of Thalamic origin early afterThalamic insults.
Abstract: Central post-stroke pain of thalamic origin is an extremely distressing and often refractory disorder. There are no well-established predictors for pain development after thalamic stroke, and the role of different thalamic nuclei is unclear. Here, we used structural magnetic resonance imaging to identify the thalamic nuclei, specifically implicated in the generation of central post-stroke pain of thalamic origin. Lesions of 10 patients with central post-stroke pain of thalamic origin and 10 control patients with thalamic strokes without pain were identified as volumes of interest on magnetic resonance imaging data. Non-linear deformations were estimated to match each image with a high-resolution template and were applied to each volume of interest. By using a digital atlas of the thalamus, we elucidated the involvement of different nuclei with respect to each lesion. Patient and control volumes of interest were summed separately to identify unique areas of involvement. Voxelwise odds ratio maps were calculated to localize the anatomical site where lesions put patients at risk of developing central post-stroke pain of thalamic origin. In the patients with pain, mainly lateral and posterior thalamic nuclei were affected, whereas a more anterior-medial lesion pattern was evident in the controls. The lesions of 9 of 10 pain patients overlapped at the border of the ventral posterior nucleus and the pulvinar, coinciding with the ventrocaudalis portae nucleus. The lesions of this area showed an odds ratio of 81 in favour of developing thalamic pain. The high odds ratio at the ventral posterior nucleus-pulvinar border zone indicates that this area is crucial in the pathogenesis of thalamic pain and demonstrates the feasibility of identifying patients at risk of developing central post-stroke pain of thalamic origin early after thalamic insults. This provides a basis for pre-emptive treatment studies.