scispace - formally typeset
Search or ask a question

Showing papers by "Carlo M. Croce published in 2013"


Journal ArticleDOI
TL;DR: How microRNA profiles are altered in cancer is discussed, highlighting their potential as sensitive biomarkers for cancer risk stratification, outcome prediction and classification of histological subtypes.

386 citations


Journal ArticleDOI
TL;DR: An increased understanding of fundamental miRNA biology, improved bioinformatics, and directed in vivo targeting while minimizing off‐target effects and toxicity will be required for successful translational application.
Abstract: The discovery that noncoding components of the genome, including microRNA (miRNA or miR), can contribute to the pathogenesis of cancer has led investigators to contemplate using these molecules to guide clinical decision making. Currently, miRNA signatures are being applied in human clinical trials and miRNA-directed therapy is under way, with miR-122 targeting in hepatitis C (HCV) being the most developed therapy thus far. miRNA-based targeting in cancer is not far behind, with several private companies developing therapeutics. We are recognizing the potential for miRNA biology to clarify both the molecular pathogenesis of cancer and the inherent complexities in translating its biology to clinics. An increased understanding of fundamental miRNA biology, improved bioinformatics, and directed in vivo targeting while minimizing off-target effects and toxicity will be required for successful translational application. Here, we provide an overview of miRNAs, with a focus on aspects of translating bench-based discoveries to the clinic.

356 citations


Journal ArticleDOI
TL;DR: How the factors encoded by transcripts targeted by these five miRNAs, be they transcription factors, tumor‐suppressors, or regulators of different signaling pathways, can deregulate the immune response and favor pro‐tumor immunity is focused on.
Abstract: It is now largely admitted that a pro-inflammatory environment may curtail anti-tumor immunity and favor cancer initiation and progression. The discovery that small non-coding regulatory RNAs, namely microRNAs (miRNAs), regulate all aspects of cell proliferation, differentiation, and function has shed a new light on regulatory mechanisms linking inflammation and cancer. Thus, miRNAs such as miR-21, miR-125b, miR-155, miR-196, and miR-210 that are critical for the immune response or hypoxia are often overexpressed in cancers and leukemias. Given the high number of their target transcripts, their deregulation may have a number of deleterious consequences, depending on the cellular context. In this review, we focus on how the factors encoded by transcripts targeted by these five miRNAs, be they transcription factors, tumor-suppressors, or regulators of different signaling pathways, can deregulate the immune response and favor pro-tumor immunity. Furthermore, we expose how the misdirected action of the main regulators of these miRNAs, such as nuclear factor κB (NF-κB), activator protein-1 (AP-1), and signal transduction and activators of transcription (STAT) transcription factors, or AKT and transforming growth factor β (TGFβ) signaling pathways, can contribute to decrease anti-tumor immunity and enhance cell proliferation and oncogenesis. We conclude by briefly discussing about how these discoveries may possibly lead to the development of new miRNA-based cancer therapies.

195 citations


Journal ArticleDOI
TL;DR: It is shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression--but not activity--of the BCR-ABL1 oncogene, and Targeting the JAK2/ PP2A/β-catenin network in quiescent H SCs with PADs has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on
Abstract: The success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) depends on the requirement for BCR-ABL1 kinase activity in CML progenitors. However, CML quiescent HSCs are TKI resistant and represent a BCR-ABL1 kinase–independent disease reservoir. Here we have shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression — but not activity — of the BCR-ABL1 oncogene. Examination of HSCs from CML patients and healthy individuals revealed that PP2A activity was suppressed in CML compared with normal HSCs. TKI-resistant CML quiescent HSCs showed increased levels of BCR-ABL1, but very low kinase activity. BCR-ABL1 expression, but not kinase function, was required for recruitment of JAK2, activation of a JAK2/β-catenin survival/self-renewal pathway, and inhibition of PP2A. PP2A-activating drugs (PADs) markedly reduced survival and self-renewal of CML quiescent HSCs, but not normal quiescent HSCs, through BCR-ABL1 kinase–independent and PP2A-mediated inhibition of JAK2 and β-catenin. This led to suppression of human leukemic, but not normal, HSC/progenitor survival in BM xenografts and interference with long-term maintenance of BCR-ABL1–positive HSCs in serial transplantation assays. Targeting the JAK2/PP2A/β-catenin network in quiescent HSCs with PADs (e.g., FTY720) has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on TKIs.

194 citations


Journal ArticleDOI
TL;DR: It is proposed that CXCR4 induces chemoresistance by downregulating let-7a to promote YY1-mediated transcriptional activation of MYC and BCLXL in AML cells.
Abstract: We examined the role of microRNAs (miRNAs) in targeting the stromal-derived factor 1α/CXCR4 (SDF-1α/CXCR4) axis to overcome chemoresistance of AML cells. Microarray analysis of OCI-AML3 cells revealed that the miRNA let-7a was downregulated by SDF-1α-mediated CXCR4 activation and increased by CXCR4 inhibition. Overexpression of let-7a in AML cell lines was associated with decreased c-Myc and BCL-XL protein expression and enhanced chemosensitivity, both in vitro and in vivo. We identified the transcription factor Yin Yang 1 (YY1) as a link between SDF-1α/CXCR4 signaling and let-7a, as YY1 was upregulated by SDF-1α and downregulated by treatment with a CXCR4 antagonist. ChIP assay confirmed the binding of YY1 to unprocessed let-7a DNA fragments, and treatment with YY1 shRNA increased let-7a expression. In primary human AML samples, high CXCR4 expression was associated with low let-7a levels. Xenografts of primary human AML cells engineered to overexpress let-7a exhibited enhanced sensitivity to cytarabine, resulting in greatly extended survival of immunodeficient mice. Based on these data, we propose that CXCR4 induces chemoresistance by downregulating let-7a to promote YY1-mediated transcriptional activation of MYC and BCLXL in AML cells.

170 citations


Journal ArticleDOI
06 Feb 2013-PLOS ONE
TL;DR: The findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation.
Abstract: Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways. Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis.

168 citations


Journal ArticleDOI
TL;DR: It is suggested that blockage of VEGF through the use of an anti-VEGFA antibody may not be sufficient to improve survival in ovarian cancer patients unless VEGFB signaling is also blocked.
Abstract: Epithelial ovarian cancer is the most lethal gynecologic malignancy; it is highly aggressive and causes almost 125,000 deaths yearly. Despite advances in detection and cytotoxic therapies, a low percentage of patients with advanced stage disease survive 5 y after the initial diagnosis. The high mortality of this disease is mainly caused by resistance to the available therapies. Here, we profiled microRNA (miR) expression in serous epithelial ovarian carcinomas to assess the possibility of a miR signature associated with chemoresistance. We analyzed tumor samples from 198 patients (86 patients as a training set and 112 patients as a validation set) for human miRs. A signature of 23 miRs associated with chemoresistance was generated by array analysis in the training set. Quantitative RT-PCR in the validation set confirmed that three miRs (miR-484, -642, and -217) were able to predict chemoresistance of these tumors. Additional analysis of miR-484 revealed that the sensitive phenotype is caused by a modulation of tumor vasculature through the regulation of the VEGFB and VEGFR2 pathways. We present compelling evidence that three miRs can classify the response to chemotherapy of ovarian cancer patients in a large multicenter cohort and that one of these three miRs is involved in the control of tumor angiogenesis, indicating an option in the treatment of these patients. Our results suggest, in fact, that blockage of VEGF through the use of an anti-VEGFA antibody may not be sufficient to improve survival in ovarian cancer patients unless VEGFB signaling is also blocked.

165 citations


Journal ArticleDOI
TL;DR: The integrated RNA signature was successfully validated on eight BC cohorts, comprising a total of 2,399 patients, and it had superior performance for risk stratification with respect to other RNA predictors, including the mRNAs used in MammaPrint and Oncotype DX assays.
Abstract: The optimal management of breast cancer (BC) presents challenges due to the heterogeneous molecular classification of the disease. We performed survival analysis on a cohort of 466 patients with primary invasive ductal carcinoma (IDC), the most frequent type of BC, by integrating mRNA, microRNA (miRNA), and DNA methylation next-generation sequencing data from The Cancer Genome Atlas (TCGA). Expression data from eight other BC cohorts were used for validation. The prognostic value of the resulting miRNA/mRNA signature was compared with that of other prognostic BC signatures. Thirty mRNAs and seven miRNAs were associated with overall survival across different clinical and molecular subclasses of a 466-patient IDC cohort from TCGA. The prognostic RNAs included PIK3CA, one of the two most frequently mutated genes in IDC, and miRNAs such as hsa-miR-328, hsa-miR-484, and hsa-miR-874. The area under the curve of the receiver-operator characteristic for the IDC risk predictor in the TCGA cohort was 0.74 at 60 mo of overall survival (P < 0.001). Most relevant for clinical application, the integrated signature had the highest prognostic value in early stage I and II tumors (receiver-operator characteristic area under the curve = 0.77, P value < 0.001). The genes in the RNA risk predictor had an independent prognostic value compared with the clinical covariates, as shown by multivariate analysis. The integrated RNA signature was successfully validated on eight BC cohorts, comprising a total of 2,399 patients, and it had superior performance for risk stratification with respect to other RNA predictors, including the mRNAs used in MammaPrint and Oncotype DX assays.

153 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells.
Abstract: MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17β-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells.

150 citations


Journal ArticleDOI
TL;DR: Global profiling for miRNAs in a cohort of stage 1 nonsmall cell lung cancers determined that miR-486 was the most down-regulated miRNA in tumors compared with adjacent uninvolved lung tissues, suggesting that miD-486 loss may be important in lung cancer development.
Abstract: MicroRNAs (miRNAs) are small 19- to 24-nt noncoding RNAs that have the capacity to regulate fundamental biological processes essential for cancer initiation and progression. In cancer, miRNAs may function as oncogenes or tumor suppressors. Here, we conducted global profiling for miRNAs in a cohort of stage 1 nonsmall cell lung cancers (n = 81) and determined that miR-486 was the most down-regulated miRNA in tumors compared with adjacent uninvolved lung tissues, suggesting that miR-486 loss may be important in lung cancer development. We report that miR-486 directly targets components of insulin growth factor (IGF) signaling including insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and phosphoinositide-3-kinase, regulatory subunit 1 (alpha) (PIK3R1, or p85a) and functions as a potent tumor suppressor of lung cancer both in vitro and in vivo. Our findings support the role for miR-486 loss in lung cancer and suggest a potential biological link to p53.

141 citations


Journal ArticleDOI
TL;DR: The involvement of microRNAs in chemotherapy resistance is discussed, recent advancements in the development and delivery of miRNA-based cancer therapeutics are focused on and an attractive anti-tumor approach for integrated cancer therapy is provided.

Journal ArticleDOI
TL;DR: The regulatory protein nucleolin controls the expression of a subset of miRNAs involved in breast cancer progression and can be targeted to inhibit breast cancer growth in vivo.
Abstract: Numerous studies have described the altered expression and the causal role of microRNAs (miRNAs) in human cancer. However, to date, efforts to modulate miRNA levels for therapeutic purposes have been challenging to implement. Here we find that nucleolin (NCL), a major nucleolar protein, posttranscriptionally regulates the expression of a specific subset of miRNAs, including miR-21, miR-221, miR-222 , and miR-103 , that are causally involved in breast cancer initiation, progression, and drug resistance. We also show that NCL is commonly overexpressed in human breast tumors and that its expression correlates with that of NCL-dependent miRNAs. Finally, inhibition of NCL using guanosine-rich aptamers reduces the levels of NCL-dependent miRNAs and their target genes, thus reducing breast cancer cell aggressiveness both in vitro and in vivo. These findings illuminate a path to novel therapeutic approaches based on NCL-targeting aptamers for the modulation of miRNA expression in the treatment of breast cancer.

Journal ArticleDOI
TL;DR: It is discovered that miRNAs released by cancer cells within microvesicles can reach and bind to Toll-like receptors in surrounding immune cells, and activate them in a paracrine loop, which provides the rationale for the development of new drugs that might be used in the treatment of cancer as well as other inflammation-related diseases.
Abstract: Tumor microenvironment plays a central role in the development and dissemination of cancer cells. In addition to study each specific cellular component of the microenvironment, it has become clear that it is the type and amount of information that cells exchange that ultimately affects cancer phenotype. Recently, it has been discovered that intercellular communication occurs through the release of microvesicles and exosomes, whose cargo represents the information released by one cell to a recipient cell. A key component of this cargo is represented by microRNAs (miRNAs), small non-coding RNAs with gene regulatory functions. We discovered that miRNAs released by cancer cells within microvesicles can reach and bind to Toll-like receptors (TLRs) in surrounding immune cells, and activate them in a paracrine loop. As a result, immune cells produce cytokines that increase cell proliferation and metastatic potential. This discovery provides the rationale for the development of new drugs that might be used in the...

Journal ArticleDOI
TL;DR: This is the first analysis of target prediction in a whole family of microRNAs potentially involved in survival of putative BT-ICs, and shows that miR-30a regulates the growth of breast cancer cells in non-attachment conditions.
Abstract: A subset of breast cancer cells displays increased ability to self-renew and reproduce breast cancer heterogeneity. The characterization of these so-called putative breast tumor-initiating cells (BT-ICs) may open the road for novel therapeutic strategies. As microRNAs (miRNAs) control developmental programs in stem cells, BT-ICs may also rely on specific miRNA profiles for their sustained activity. To explore the notion that miRNAs may have a role in sustaining BT-ICs, we performed a comprehensive profiling of miRNA expression in a model of putative BT-ICs enriched by non-attachment growth conditions. We found breast cancer cells grown under non-attachment conditions display a unique pattern of miRNA expression, highlighted by a marked low expression of miR-30 family members relative to parental cells. We further show that miR-30a regulates non-attachment growth. A target screening revealed that miR-30 family redundantly modulates the expression of apoptosis and proliferation-related genes. At least one of these targets, the anti-apoptotic protein AVEN, was able to partially revert the effect of miR-30a overexpression. Finally, overexpression of miR-30a in vivo was associated with reduced breast tumor progression. miR30-family regulates the growth of breast cancer cells in non-attachment conditions. This is the first analysis of target prediction in a whole family of microRNAs potentially involved in survival of putative BT-ICs.

Journal ArticleDOI
29 Aug 2013-Oncogene
TL;DR: The miR-106b-25 microRNA (miRNA) cluster is a candidate oncogene in human prostate cancer as discussed by the authors and miRNAs encoded by miR106b25 are upregulated in both primary tumors and distant metastasis.
Abstract: The miR-106b-25 microRNA (miRNA) cluster is a candidate oncogene in human prostate cancer. Here, we report that miRNAs encoded by miR-106b-25 are upregulated in both primary tumors and distant metastasis. Moreover, increased tumor miR-106b expression was associated with disease recurrence and the combination of high miR-106b and low CASP7 (caspase-7) expressions in primary tumors was an independent predictor of early disease recurrence (adjusted hazard ratio=4.1; 95% confidence interval: 1.6–12.3). To identify yet unknown oncogenic functions of miR-106b, we overexpressed it in LNCaP human prostate cancer cells to examine miR-106b-induced global expression changes among protein-coding genes. The approach revealed that CASP7 is a direct target of miR-106b, which was confirmed by western blot analysis and a 3′-untranslated region reporter assay. Moreover, selected phenotypes induced by miR-106b knockdown in DU145 human prostate cancer cells did not develop when both miR-106b and CASP7 expression were inhibited. Further analyses showed that CASP7 is downregulated in primary prostate tumors and metastatic lesions across multiple data sets and is by itself associated with disease recurrence and disease-specific survival. Using bioinformatics, we also observed that miR-106b-25 may specifically influence focal adhesion-related pathways. This observation was experimentally examined using miR-106b-25-transduced 22Rv1 human prostate cancer cells. After infection with a miR-106b-25 lentiviral expression construct, 22Rv1 cells showed increased adhesion to basement membrane- and bone matrix-related filaments and enhanced soft agar growth. In summary, miR-106b-25 was found to be associated with prostate cancer progression and disease outcome and may do so by altering apoptosis- and focal adhesion-related pathways.

Journal ArticleDOI
TL;DR: It is shown that miR-27a regulates MET, EGFR, and Sprouty2 in lung cancer, and both direct and indirect mechanisms by which miR -27a can regulate both MET and EGFR are identified.
Abstract: In the past decade, we have observed exciting advances in lung cancer therapy, including the development of targeted therapies. However, additional strategies for early detection and tumor-based therapy are still essential in improving patient outcomes. EGF receptor (EGFR) and MET (the receptor tyrosine kinase for hepatocyte growth factors) are cell-surface tyrosine kinase receptors that have been implicated in diverse cellular processes and as regulators of several microRNAs (miRNAs), thus contributing to tumor progression. Here, we demonstrate a biological link between EGFR, MET, and the miRNA cluster 23a∼27a∼24–2. We show that miR-27a regulates MET, EGFR, and Sprouty2 in lung cancer. In addition, we identify both direct and indirect mechanisms by which miR-27a can regulate both MET and EGFR. Thus, we propose a mechanism for MET and EGFR axis regulation that may lead to the development of therapeutics in lung cancer.

Journal ArticleDOI
21 Jun 2013-PLOS ONE
TL;DR: In this paper, the miR-34a and miR34c targets platelet-derived growth factor receptor alpha and beta (PDGFRα and β), cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer.
Abstract: Lung cancer is the leading cause of cancer mortality in the world today. Although some advances in lung cancer therapy have been made, patient survival is still poor. MicroRNAs (miRNAs) can act as oncogenes or tumor-suppressor genes in human malignancy. The miR-34 family consists of tumor-suppressive miRNAs, and its reduced expression has been reported in various cancers, including non-small cell lung cancer (NSCLC). In this study, we found that miR-34a and miR-34c target platelet-derived growth factor receptor alpha and beta (PDGFR-α and PDGFR-β), cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer. MiR-34a and miR-34c were downregulated in lung tumors compared to normal tissues. Moreover, we identified an inverse correlation between PDGFR-α/β and miR-34a/c expression in lung tumor samples. Finally, miR-34a/c overexpression or downregulation of PDGFR-α/β by siRNAs, strongly augmented the response to TNF-related apoptosis inducing ligand (TRAIL) while reducing migratory and invasive capacity of NSCLC cells.

Journal ArticleDOI
TL;DR: In vitro functional assays showed that miR-31 increases cell migration, invasion, and proliferation in an ERK1/2 signaling-dependent manner and potentially identified a miRNA predicting the presence of lymph node metastasis and survival outcomes in patients of lung adenocarcinoma.
Abstract: Purpose: We performed genome-wide microRNA-sequencing (miRNA-seq) in primary cancer tissue from lung adenocarcinoma patients to identify markers for the presence of lymph node metastasis. Experimental Design: Markers for lymph node metastasis identified by sequencing were validated in a separate cohort using QPCR. After additional validation in the TCGA dataset, functional characterization studies were performed in vitro. Results: MiR-31 was upregulated in lung adenocarcinoma tissues from patients with lymph node metastases compared to those without lymph node metastases. We confirmed miR-31 to be up-regulated in lymph node positive patients in a separate patient cohort (p=0.009, t-test), and to be expressed higher in adenocarcinoma tissue than in matched normal adjacent lung tissues (p<0.0001, paired t-test). MiR-31 was then validated as a marker for lymph node metastasis in an external validation cohort of 233 lung adenocarcinoma cases of the TCGA (p=0.031, t-test). In vitro functional assays showed that miR-31 increases cell migration, invasion, and proliferation in an ERK1/2 signaling dependent manner. Of note, miR-31 was a significant predictor of survival in a multivariate cox regression model even when controlling for cancer staging. Exploratory in silico analysis showed that low expression of miR-31 is associated with excellent survival for T2N0 patients. Conclusions: We applied microRNA-seq to study microRNomes in lung adenocarcinoma tissue samples for the first time and identified potentially a microRNA predicting the presence of lymph node metastasis and survival outcomes in lung adenocarcinoma patients.

Journal ArticleDOI
TL;DR: The findings reveal a unique role of miR-29 and suggest that its absence may contribute to sarcoma tumorigenesis, as well as revealing the role of HuR, a decoy that prevents HuR-mediated degradation of A20, and loss of this pathway may contributing to NF-κB signaling in sarcomas.
Abstract: In sarcoma, the activity of NF-κB (nuclear factor κB) reduces the abundance of the microRNA (miRNA) miR-29. The tumor suppressor A20 [also known as TNFAIP3 (tumor necrosis factor-α-induced protein 3)] inhibits an upstream activator of NF-κB and is often mutated in lymphomas. In a panel of human sarcoma cell lines, we found that the activation of NF-κB was increased and, although the abundance of A20 protein and mRNA was decreased, the gene encoding A20 was rarely mutated. The 3' untranslated region (UTR) of A20 mRNA has conserved binding sites for both of the miRNAs miR-29 and miR-125. Whereas the expression of miR-125 was increased in human sarcoma tissue, that of miR-29 was decreased in most samples. Overexpression of miR-125 decreased the abundance of A20 mRNA, whereas reconstituting miR-29 in sarcoma cell lines increased the abundance of A20 mRNA and protein. By interacting directly with the RNA binding protein HuR (human antigen R; also known as ELAVL1), miR-29 prevented HuR from binding to the A20 3'UTR and recruiting the RNA degradation complex RISC (RNA-induced silencing complex), suggesting that miR-29 can act as a decoy for HuR, thus protecting A20 transcripts. Decreased miR-29 and A20 abundance in sarcomas correlated with increased activity of NF-κB and decreased expression of genes associated with differentiation. Together, the findings reveal a unique role of miR-29 and suggest that its absence may contribute to sarcoma tumorigenesis.

Journal ArticleDOI
TL;DR: MiR-21 is induced by hypoxia in pancreatic cancer cells via HIF-1α upregulation and allows cells to avoid apoptosis in a hypoxic microenvironment.

Journal ArticleDOI
TL;DR: Given the heterogeneity of this disease, it is likely that increases in long-term survival might be also achieved by translating the recent insights of miRNAs involvement in EOC into novel targeted therapies that will have a major impact on the management of ovarian cancer.
Abstract: Epithelial ovarian cancer (EOC) is a complex disease, with multiple histological subtypes recognized. There have been major advances in the understanding of the cellular and molecular biology of this human malignancy, however the survival rate of women with epithelial ovarian cancer has changed little since platinum based-treatment was introduced more than 30 years ago. Since 2006, an increasing number of studies have indicated an essential role for microRNAs in ovarian cancer tumorigenesis. Several microRNA profiling studies have shown that they associate with different aspects of ovarian cancer (tumor subtype, stage, histological grade, prognosis and therapy resistance) and pointed to a critical role for microRNAs in the pathogenesis and progression of EOC. In this review, we discuss the current data concerning the accumulating evidence of the modulated expression of microRNAs in EOC, their role in diagnosis, prognosis and prediction of response to therapy. Given the heterogeneity of this disease, it is likely that increases in long-term survival might be also achieved by translating the recent insights of miRNAs involvement in EOC into novel targeted therapies that will have a major impact on the management of ovarian cancer.

Journal ArticleDOI
TL;DR: Direct experimental evidence is provided confirming that the miR-17∼92 cluster, which is amplified in human B-cell lymphoma, also is oncogenic when overexpressed in mice, and this results provide direct experimental evidence confirming that dysregulation of this cluster causes B- cell lymphomas or leukemias.
Abstract: miR-17∼92 is a polycistronic microRNA (miR) cluster (consisting of miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a) which frequently is overexpressed in several solid and lymphoid malignancies. Loss- and gain-of-function studies have revealed the role of miR-17∼92 in heart, lung, and B-cell development and in Myc-induced B-cell lymphomas, respectively. Recent studies indicate that overexpression of this locus leads to lymphoproliferation, but no experimental proof that dysregulation of this cluster causes B-cell lymphomas or leukemias is available. To determine whether miR-17∼92- overexpression induces lymphomagenesis/leukemogenesis, we generated a B-cell–specific transgenic mouse model with targeted overexpression of this cluster in B cells. The miR-17∼92 overexpression was driven by the Eµ-enhancer and Ig heavy-chain promoter, and a 3′ GFP tag was added to the transgene to track the miR expression. Expression analysis using Northern Blot and quantitative RT-PCR confirmed 2.5- to 25-fold overexpression of all six miRs in the transgenic mice spleens as compared with spleens from wild-type mice. Eµ-miR-17∼92 mice developed B-cell malignancy by the age of 12–18 mo with a penetrance of ∼80% (49% splenic B-cell lymphoproliferative disease, 28% lymphoma). At this stage mice exhibited severe splenomegaly with abnormal B-cell–derived white pulp expansion and enlarged lymph nodes. Interestingly, we found three classes of B-cell lymphomas/leukemias at varying grades of differentiation. These included expansion of CD19+ and CD5+ double-positive B cells similar to the aggressive form of human B-cell chronic lymphocytic leukemia, B220+ CD43+ B1-cell proliferation, and a CD19+ aggressive diffuse large B-cell lymphoma–like disease, as assessed by flow cytometry and histopathological analysis.

Journal ArticleDOI
TL;DR: This first study of ucRNA expression in human prostate cancer indicates an altered transcript expression in the disease, and identifies several ucRNAs that were responsive to treatment with either epigenetic drugs or androgen.
Abstract: Ultraconserved regions (UCR) are genomic segments of more than 200 base pairs that are evolutionarily conserved among mammalian species. They are thought to have functions as transcriptional enhancers and regulators of alternative splicing. Recently, it was shown that numerous RNAs are transcribed from these regions. These UCR-encoded transcripts (ucRNAs) were found to be expressed in a tissue- and disease-specific manner and may interfere with the function of other RNAs through RNA: RNA interactions. We hypothesized that ucRNAs have unidentified roles in the pathogenesis of human prostate cancer. In a pilot study, we examined ucRNA expression profiles in human prostate tumors. Using a custom microarray with 962 probesets representing sense and antisense sequences for the 481 human UCRs, we examined ucRNA expression in resected, fresh-frozen human prostate tissues (57 tumors, 7 non-cancerous prostate tissues) and in cultured prostate cancer cells treated with either epigenetic drugs (the hypomethylating agent, 5-Aza 2′deoxycytidine, and the histone deacetylase inhibitor, trichostatin A) or a synthetic androgen, R1881. Expression of selected ucRNAs was also assessed by qRT-PCR and NanoString®-based assays. Because ucRNAs may function as RNAs that target protein-coding genes through direct and inhibitory RNA: RNA interactions, computational analyses were applied to identify candidate ucRNA:mRNA binding pairs. We observed altered ucRNA expression in prostate cancer (e.g., uc.106+, uc.477+, uc.363 + A, uc.454 + A) and found that these ucRNAs were associated with cancer development, Gleason score, and extraprostatic extension after controlling for false discovery (false discovery rate < 5% for many of the transcripts). We also identified several ucRNAs that were responsive to treatment with either epigenetic drugs or androgen (R1881). For example, experiments with LNCaP human prostate cancer cells showed that uc.287+ is induced by R1881 (P < 0.05) whereas uc.283 + A was up-regulated following treatment with combined 5-Aza 2′deoxycytidine and trichostatin A (P < 0.05). Additional computational analyses predicted RNA loop-loop interactions of 302 different sense and antisense ucRNAs with 1058 different mRNAs, inferring possible functions of ucRNAs via direct interactions with mRNAs. This first study of ucRNA expression in human prostate cancer indicates an altered transcript expression in the disease.

Journal ArticleDOI
18 Apr 2013-Blood
TL;DR: The enhanced NK-cell survival, expansion, activation, and tumor control that result from overexpression of miR-155 in NK cells could be explained, in part, via diminished expression of the inositol phosphatase SHIP1 and increased activation of ERK and AKT kinases.

Journal ArticleDOI
TL;DR: It is demonstrated that polyinosinic:polycytidylic acid-mediated activation of TLR3 induces microRNAs targeting DNA methyltransferases, leading to demethylation and reexpression of the oncosuppressor retinoic acid receptor beta (RARβ).
Abstract: Toll-like receptor 3 (TLR3) is a key effector of the innate immune system against viruses. Activation of TLR3 exerts an antitumoral effect through a mechanism of action still poorly understood. Here we show that TLR3 activation by polyinosinic:polycytidylic acid induces up-regulation of microRNA-29b, -29c, -148b, and -152 in tumor-derived cell lines and primary tumors. In turn, these microRNAs induce reexpression of epigenetically silenced genes by targeting DNA methyltransferases. In DU145 and TRAMP-C1 prostate and MDA-MB-231 breast cancer cells, we demonstrated that polyinosinic:polycytidylic acid-mediated activation of TLR3 induces microRNAs targeting DNA methyltransferases, leading to demethylation and reexpression of the oncosuppressor retinoic acid receptor beta (RARβ). As a result, cancer cells become sensitive to retinoic acid and undergo apoptosis both in vitro and in vivo. This study provides evidence of an antitumoral mechanism of action upon TLR3 activation and the biological rationale for a combined TLR3 agonist/retinoic acid treatment of prostate and breast cancer.

Journal ArticleDOI
19 Mar 2013-PLOS ONE
TL;DR: A novel mechanism through which miR-125b-5p not only regulates tumor growth in vivo, but also increases cellular resistance to proteasome inhibitors via modulation of MAD4 is described.
Abstract: Successful/effective cancer therapy in low grade lymphoma is often hampered by cell resistance to anti-neoplastic agents. The crucial mechanisms responsible for this phenomenon are poorly understood. Overcoming resistance of tumor cells to anticancer agents, such as proteasome inhibitors, could improve their clinical efficacy. Using cutaneous T-cell lymphoma (CTCL) as a model of the chemotherapy-resistant peripheral lymphoid malignancy, we demonstrated that resistance to proteasome inhibition involved a signaling between the oncogene cMyc and miR-125b-5p. Bortezomib repressed cMyc and simultaneously induced miR-125b-5p that exerted a cytoprotective effect through the downmodulation of MAD4. Overexpression of cMyc repressed miR-125b-5p transcription and sensitized lymphoma cells to bortezomib. The central role of miR-125b-5p was further confirmed in a mouse model of T-cell lymphoma, where xenotransplantation of human CTCL cells overexpressing miR-125b-5p resulted in enhanced tumor growth and a shorter median survival. Our findings describe a novel mechanism through which miR-125b-5p not only regulates tumor growth in vivo, but also increases cellular resistance to proteasome inhibitors via modulation of MAD4.

Journal ArticleDOI
09 Oct 2013-PLOS ONE
TL;DR: A novel CLL cell line (OSU-CLL) generated by EBV transformation is described, which displays a similar cytogenetic and immunophenotype observed in the patient’s CLL (CD5 positive with trisomy 12 and 19).
Abstract: Studies of chronic lymphocytic leukemia (CLL) have yielded substantial progress, however a lack of immortalized cell lines representative of the primary disease has hampered a full understanding of disease pathogenesis and development of new treatments. Here we describe a novel CLL cell line (OSU-CLL) generated by EBV transformation, which displays a similar cytogenetic and immunophenotype observed in the patient’s CLL (CD5 positive with trisomy 12 and 19). A companion cell line was also generated from the same patient (OSU-NB). This cell line lacked typical CLL characteristics, and is likely derived from the patient’s normal B cells. In vitro migration assays demonstrated that OSU-CLL exhibits migratory properties similar to primary CLL cells whereas OSU-NB has significantly reduced ability to migrate spontaneously or towards chemokine. Microarray analysis demonstrated distinct gene expression patterns in the two cell lines, including genes on chromosomes 12 and 19, which is consistent with the cytogenetic profile in this cell line. Finally, OSU-CLL was readily transplantable into NOG mice, producing uniform engraftment by three weeks with leukemic cells detectable in the peripheral blood spleen and bone marrow. These studies describe a new CLL cell line that extends currently available models to study gene function in this disease.

Journal ArticleDOI
TL;DR: The current knowledge on viral circulating miRNAs is summarized and a few examples of computational prediction of their function are provided.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs responsible of post-transcriptional regulation of gene expression through interaction with messenger RNAs (mRNAs). They are involved in important biological processes and are often dysregulated in a variety of diseases, including cancer and infections. Viruses also encode their own sets of miRNAs, which they use to control the expression of either the host’s genes and/or their own. In the past few years evidence of the presence of cellular miRNAs in extracellular human body fluids such as serum, plasma, saliva, and urine has accumulated. They have been found either cofractionate with the Argonaute2 protein or in membrane-bound vesicles such as exosomes. Although little is known about the role of circulating miRNAs, it has been demonstrated that miRNAs secreted by virus-infected cells are transferred to and act in uninfected recipient cells. In this work we summarize the current knowledge on viral circulating miRNAs and provide a few examples of computational prediction of their function.

Journal ArticleDOI
TL;DR: The results suggest autoantigen-stimulated BCR signaling in secondary tissues promotes selection, expansion, and disease progression by activating pro-oncogenic signaling pathways, and that—outside secondary lymphoid tissues—clonal evolution is retarded by diminished BCR-signaling.
Abstract: (Auto)antigen engagement by the B-cell receptor (BCR) and possibly the sites where this occurs influence the outcome of chronic lymphocytic leukemia (CLL). To test if selection for autoreactivity leads to increased aggressiveness and if this selection plays out equally in primary and secondary tissues, we used T-cell leukemia (TCL)1 cells reactive with the autoantigen phosphatidylcholine (PtC). After repeated transfers of splenic lymphocytes from a single mouse with oligoclonal PtC-reactive cells, outgrowth of cells expressing a single IGHV-D-J rearrangement and superior PtC-binding and disease virulence occurred. In secondary tissues, increased PtC-binding correlated with enhanced BCR signaling and cell proliferation, whereas reduced signaling and division of cells from the same clone was documented in cells residing in the bone marrow, blood, and peritoneum, even though cells from the last site had highest surface membrane IgM density. Gene-expression analyses revealed reciprocal changes of genes involved in BCR-, CD40-, and PI3K-signaling between splenic and peritoneal cells. Our results suggest autoantigen-stimulated BCR signaling in secondary tissues promotes selection, expansion, and disease progression by activating pro-oncogenic signaling pathways, and that—outside secondary lymphoid tissues—clonal evolution is retarded by diminished BCR-signaling. This transferrable, antigenic-specific murine B-cell clone (TCL1-192) provides a platform to study the types and sites of antigen-BCR interactions and genetic alterations that result and may have relevance to patients.

Journal ArticleDOI
15 Nov 2013-Blood
TL;DR: A molecular signature representative of the transcriptional abnormalities of BPDCN is identified and a cellular model proposing the first molecular targeted therapeutic approach in the setting of this currently incurable disease is developed.