scispace - formally typeset
C

Cody Messick

Researcher at Pennsylvania State University

Publications -  103
Citations -  47088

Cody Messick is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: LIGO & Gravitational wave. The author has an hindex of 53, co-authored 84 publications receiving 38739 citations. Previous affiliations of Cody Messick include University of Texas at Austin.

Papers
More filters
Journal ArticleDOI

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

B. P. Abbott, +1148 more
- 04 Sep 2019 - 
TL;DR: In this paper, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma during the first and second observing runs of the advanced GW detector network.
Journal ArticleDOI

GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence

B. P. Abbott, +1116 more
TL;DR: For the first time, the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network is tested, thus enabling a new class of phenomenological tests of gravity.
Journal ArticleDOI

GW170817: Measurements of Neutron Star Radii and Equation of State.

B. P. Abbott, +1238 more
TL;DR: This analysis expands upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars.
Journal ArticleDOI

Tests of general relativity with GW150914

B. P. Abbott, +979 more
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Journal ArticleDOI

GW170608: Observation of a 19 solar-mass binary black hole coalescence

B. P. Abbott, +1154 more
TL;DR: In this article, a GW signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13.5%.