scispace - formally typeset
Search or ask a question

Showing papers by "Feng Zhang published in 2012"


Journal ArticleDOI
TL;DR: A toolbox for rapid construction of custom TALE transcription factors (TALE-TFs) and nucleases (TALENs) using a hierarchical ligation procedure is described and will enable a broad range of biological applications.
Abstract: Transcription activator-like effectors (TALEs) are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas sp. The DNA-binding domain of each TALE consists of tandem 34-amino acid repeat modules that can be rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Here we describe a toolbox for rapid construction of custom TALE transcription factors (TALE-TFs) and nucleases (TALENs) using a hierarchical ligation procedure. This toolbox facilitates affordable and rapid construction of custom TALE-TFs and TALENs within 1 week and can be easily scaled up to construct TALEs for multiple targets in parallel. We also provide details for testing the activity in mammalian cells of custom TALE-TFs and TALENs using quantitative reverse-transcription PCR and Surveyor nuclease, respectively. The TALE toolbox described here will enable a broad range of biological applications.

721 citations


Journal ArticleDOI
TL;DR: The results suggest that in a small set of genes DNA methylation may be a candidate mechanism of mediating not only environmental, but also genetic effects on age-related phenotypes, and that a-DMRs may initiate at an earlier age.
Abstract: Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions (DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans (EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype. Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61, suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype-phenotype association, where the CpG-site was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a small set of genes DNA methylation may be a candidate mechanism of mediating not only environmental, but also genetic effects on age-related phenotypes.

664 citations


Journal ArticleDOI
16 Aug 2012-Nature
TL;DR: In this article, an optogenetic activation of parvalbumin-positive (PV+) interneurons in the mouse primary visual cortex (V1) sharpens neuronal feature selectivity and improves perceptual discrimination.
Abstract: Inhibitory interneurons are essential components of the neural circuits underlying various brain functions. In the neocortex, a large diversity of GABA (γ-aminobutyric acid) interneurons has been identified on the basis of their morphology, molecular markers, biophysical properties and innervation pattern. However, how the activity of each subtype of interneurons contributes to sensory processing remains unclear. Here we show that optogenetic activation of parvalbumin-positive (PV+) interneurons in the mouse primary visual cortex (V1) sharpens neuronal feature selectivity and improves perceptual discrimination. Using multichannel recording with silicon probes and channelrhodopsin-2 (ChR2)-mediated optical activation, we found that increased spiking of PV+ interneurons markedly sharpened orientation tuning and enhanced direction selectivity of nearby neurons. These effects were caused by the activation of inhibitory neurons rather than a decreased spiking of excitatory neurons, as archaerhodopsin-3 (Arch)-mediated optical silencing of calcium/calmodulin-dependent protein kinase IIα (CAMKIIα)-positive excitatory neurons caused no significant change in V1 stimulus selectivity. Moreover, the improved selectivity specifically required PV+ neuron activation, as activating somatostatin or vasointestinal peptide interneurons had no significant effect. Notably, PV+ neuron activation in awake mice caused a significant improvement in their orientation discrimination, mirroring the sharpened V1 orientation tuning. Together, these results provide the first demonstration that visual coding and perception can be improved by increased spiking of a specific subtype of cortical inhibitory interneurons.

535 citations


01 Aug 2012
TL;DR: It is shown that optogenetic activation of parvalbumin-positive (PV+) interneurons in the mouse primary visual cortex (V1) sharpens neuronal feature selectivity and improves perceptual discrimination, the first demonstration that visual coding and perception can be improved by increased spiking of a specific subtype of cortical inhibitory interneuron.
Abstract: Inhibitory interneurons are essential components of the neural circuits underlying various brain functions. In the neocortex, a large diversity of GABA (γ-aminobutyric acid) interneurons has been identified on the basis of their morphology, molecular markers, biophysical properties and innervation pattern. However, how the activity of each subtype of interneurons contributes to sensory processing remains unclear. Here we show that optogenetic activation of parvalbumin-positive (PV+) interneurons in the mouse primary visual cortex (V1) sharpens neuronal feature selectivity and improves perceptual discrimination. Using multichannel recording with silicon probes and channelrhodopsin-2 (ChR2)-mediated optical activation, we found that increased spiking of PV+ interneurons markedly sharpened orientation tuning and enhanced direction selectivity of nearby neurons. These effects were caused by the activation of inhibitory neurons rather than a decreased spiking of excitatory neurons, as archaerhodopsin-3 (Arch)-mediated optical silencing of calcium/calmodulin-dependent protein kinase IIα (CAMKIIα)-positive excitatory neurons caused no significant change in V1 stimulus selectivity. Moreover, the improved selectivity specifically required PV+ neuron activation, as activating somatostatin or vasointestinal peptide interneurons had no significant effect. Notably, PV+ neuron activation in awake mice caused a significant improvement in their orientation discrimination, mirroring the sharpened V1 orientation tuning. Together, these results provide the first demonstration that visual coding and perception can be improved by increased spiking of a specific subtype of cortical inhibitory interneurons.

472 citations


Journal ArticleDOI
16 Feb 2012-Nature
TL;DR: The crystal structure of a ChR is presented and the essential molecular architecture of ChRs is revealed, including the retinal-binding pocket and cation conduction pathway, which paves the way for the precise and principled design of ChR variants with novel properties.
Abstract: Channelrhodopsins (ChRs) are light-gated cation channels derived from algae that have shown experimental utility in optogenetics; for example, neurons expressing ChRs can be optically controlled with high temporal precision within systems as complex as freely moving mammals. Although ChRs have been broadly applied to neuroscience research, little is known about the molecular mechanisms by which these unusual and powerful proteins operate. Here we present the crystal

471 citations


Journal ArticleDOI
TL;DR: The optimized reagents implemented in plant protoplasts should be useful for targeted modification of cells from diverse plant species and using a variety of means for reagent delivery.
Abstract: The ability to precisely engineer plant genomes offers much potential for advancing basic and applied plant biology. Here, we describe methods for the targeted modification of plant genomes using transcription activator-like effector nucleases (TALENs). Methods were optimized using tobacco (Nicotiana tabacum) protoplasts and TALENs targeting the acetolactate synthase (ALS) gene. Optimal TALEN scaffolds were identified using a protoplast-based single-strand annealing assay in which TALEN cleavage creates a functional yellow fluorescent protein gene, enabling quantification of TALEN activity by flow cytometry. Single-strand annealing activity data for TALENs with different scaffolds correlated highly with their activity at endogenous targets, as measured by high-throughput DNA sequencing of polymerase chain reaction products encompassing the TALEN recognition sites. TALENs introduced targeted mutations in ALS in 30% of transformed cells, and the frequencies of targeted gene insertion approximated 14%. These efficiencies made it possible to recover genome modifications without selection or enrichment regimes: 32% of tobacco calli generated from protoplasts transformed with TALEN-encoding constructs had TALEN-induced mutations in ALS, and of 16 calli characterized in detail, all had mutations in one allele each of the duplicate ALS genes (SurA and SurB). In calli derived from cells treated with a TALEN and a 322-bp donor molecule differing by 6 bp from the ALS coding sequence, 4% showed evidence of targeted gene replacement. The optimized reagents implemented in plant protoplasts should be useful for targeted modification of cells from diverse plant species and using a variety of means for reagent delivery.

438 citations


Journal ArticleDOI
TL;DR: Conget et al. as mentioned in this paper improved TALE specificity for guanine binding and used a genetic construct based on TALEs to efficiently repress expression of a target gene, which will improve the precision and effectiveness of genome engineering that can be achieved using TALE.
Abstract: Transcription activator-like effectors are sequence-specific DNA-binding proteins that harbour modular, repetitive DNA-binding domains. Transcription activator-like effectors have enabled the creation of customizable designer transcriptional factors and sequence-specific nucleases for genome engineering. Here we report two improvements of the transcription activator-like effector toolbox for achieving efficient activation and repression of endogenous gene expression in mammalian cells. We show that the naturally occurring repeat-variable diresidue Asn-His (NH) has high biological activity and specificity for guanine, a highly prevalent base in mammalian genomes. We also report an effective transcription activator-like effector transcriptional repressor architecture for targeted inhibition of transcription in mammalian cells. These findings will improve the precision and effectiveness of genome engineering that can be achieved using transcription activator-like effectors. The peptide sequence of transcription activator-like effectors (TALEs) can be customized to tailor the binding of TALEs to specific DNA sequences. Conget al. improve TALE specificity for guanine binding and use a genetic construct based on TALEs to efficiently repress expression of a target gene.

375 citations


Journal ArticleDOI
TL;DR: A solid surface-based sequential ligation approach, which is referred to as iterative capped assembly (ICA), that adds DNA repeat monomers individually to a growing chain while using hairpin ‘capping’ oligonucleotides to block incompletely extended chains, greatly increasing the frequency of full-length final products.
Abstract: DNA built from modular repeats presents a challenge for gene synthesis. We present a solid surface-based sequential ligation approach, which we refer to as iterative capped assembly (ICA), that adds DNA repeat monomers individually to a growing chain while using hairpin ‘capping’ oligonucleotides to block incompletely extended chains, greatly increasing the frequency of full-length final products. Applying ICA toamodelproblem,constructionofcustomtranscription activator-like effector nucleases (TALENs) for genome engineering, we demonstrate efficient synthesis of TALE DNA-binding domains up to 21 monomers long and their ligation into a nucleasecarrying backbone vector all within 3h. We used ICA to synthesize 20 TALENs of varying DNA target site length and tested their ability to stimulate gene editing by a donor oligonucleotide in human cells. All the TALENS show activity, with the ones >15 monomers long tending to work best. Since ICA builds full-length constructs from individual monomers rather than large exhaustive libraries of pre-fabricated oligomers, it will be trivial to incorporate future modified TALE monomers with improved or expanded function or to synthesize other types of repeat-modular DNA where the diversity of possible monomers makes exhaustive oligomer libraries impractical.

205 citations


Journal ArticleDOI
Jun Xie1, Guanghua Xu1, Jing Wang1, Feng Zhang1, Yizhuo Zhang1 
19 Jun 2012-PLOS ONE
TL;DR: The proposed paradigm can provide comparable performance with low-adaptation characteristic and less visual discomfort for BCI applications, and the results suggest that the proposed paradigm cannot be compared with other BCI paradigms in terms of efficiency or adaptability.
Abstract: In this study, we utilize a special visual stimulation protocol, called motion reversal, to present a novel steady-state motion visual evoked potential (SSMVEP)-based BCI paradigm that relied on human perception of motions oscillated in two opposite directions. Four Newton's rings with the oscillating expansion and contraction motions served as visual stimulators to elicit subjects' SSMVEPs. And four motion reversal frequencies of 8.1, 9.8, 12.25 and 14 Hz were tested. According to Canonical Correlation Analysis (CCA), the offline accuracy and ITR (mean ± standard deviation) over six healthy subjects were 86.56±9.63% and 15.93±3.83 bits/min, respectively. All subjects except one exceeded the level of 80% mean accuracy. Circular Hotelling's T-Squared test () also demonstrated that most subjects exhibited significantly strong stimulus-locked SSMVEP responses. The results of declining exponential fittings exhibited low-adaptation characteristics over the 100-s stimulation sequences in most experimental conditions. Taken together, these results suggest that the proposed paradigm can provide comparable performance with low-adaptation characteristic and less visual discomfort for BCI applications.

77 citations


Journal ArticleDOI
TL;DR: The results indicate that enhanced AAR contributes to sympathetic activation in OH, and paraventricular nucleus plays an important role in theEnhanced AAR and sympatheticactivation in OH.
Abstract: We recently found that adipose afferent reflex (AAR) induced by chemical stimulation of white adipose tissue (WAT) increased sympathetic outflow and blood pressure in normal rats. The study was designed to test the hypothesis that AAR contributes to sympathetic activation in obesity hypertension. Male rats were fed with a control diet (12% kcal as fat) or high-fat diet (42% kcal as fat) for 12 weeks to induce obesity hypertension. Stimulation of WAT with capsaicin increased renal sympathetic nerve activity and mean arterial pressure. Both AAR and WAT afferent activity were enhanced in obesity hypertension (OH) compared with obesity nonhypertension (ON) and in ON compared with obesity-resistant or control diet rats. WAT sensory denervation induced by resiniferatoxin caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in OH than ON and in ON than obesity-resistant or control. The depressor effect of resiniferatoxin lasted ≥ 3 weeks in OH. Leptin antagonist in WAT reduced renal sympathetic nerve activity and mean arterial pressure in OH. WAT injection of capsaicin increased plasma renin, angiotensin II, and norepinephrine levels in OH and caused more c-fos expression in paraventricular nucleus in OH than ON and in ON than obesity-resistant or control rats. Inhibiting paraventricular nucleus neurons with lidocaine attenuated renal sympathetic nerve activity in OH and ON, decreased mean arterial pressure in OH, and abolished the capsaicin-induced AAR in all groups. The results indicate that enhanced AAR contributes to sympathetic activation in OH, and paraventricular nucleus plays an important role in the enhanced AAR and sympathetic activation in OH.

76 citations


Journal ArticleDOI
TL;DR: Recent advances in designer DNA-binding proteins based on transcriptional activator-like effectors and zinc finger proteins with a focus on designer nucleases for highly precise, efficient, and scarless gene modification are reviewed.
Abstract: Designer DNA-binding proteins based on transcriptional activator-like effectors (TALEs) and zinc finger proteins (ZFPs) are easily tailored to recognize specific DNA sequences in a modular manner. They can be engineered to generate tools for targeted genome perturbation. Here, we review recent advances in these versatile technologies with a focus on designer nucleases for highly precise, efficient, and scarless gene modification. By generating double stranded breaks and stimulating cellular DNA repair pathways, TALE and ZF nucleases have the ability to modify the endogenous genome. We also discuss current applications of designer DNA-binding proteins in synthetic biology and disease modeling, novel effector domains for genetic and epigenetic regulation, and finally perspectives on using customizable DNA-binding proteins for interrogating neural function.

Journal ArticleDOI
TL;DR: A review of the current state of molecular optogenetic tools and future directions of development can be found in this paper, where the authors describe the state of the art in optogenetics tools.

Journal ArticleDOI
TL;DR: A new CNV genotyping method based on multiplex competitive amplification was developed, which found that the human orthologue MEIG1 is flanked by an SD pair, between which non-allelic homologous recombination (NAHR) can cause recurrent CNVs.
Abstract: Local genomic architecture, such as segmental duplications (SDs), can induce copy number variations (CNVs) hotspots in the human genome, many of which manifest as genomic disorders. Significant technological advances have been achieved for genome-wide CNV investigations, but these costly methods are not suitable for genotyping certain disease-associated CNVs or other loci of interest in populations. Recently, two independent studies showed that the murine meiosis expressed gene 1 (Meig1) was critical to spermatogenesis. We found that the human orthologue MEIG1 is flanked by an SD pair, between which non-allelic homologous recombination (NAHR) can cause recurrent CNVs. To study this potential CNV hotspot and its role in spermatogenesis, we developed a new CNV genotyping method, AccuCopy, based on multiplex competitive amplification to investigate 320 patients with spermatogenic impairment and 93 healthy controls. Three MEIG1 duplications (two in patients and one in controls) were identified, whereas no deletion was found. As NAHR results in more recurrent deletions than duplications at a locus, the over representation of recurrent MEIG1 duplications suggests a potential purifying selection operating on this hotspot, possibly via fecundity. We also showed that AccuCopy is an efficient and reliable method for multiplex CNV genotyping.

01 Feb 2012
TL;DR: The current state of molecular optogenetic tools and future directions of development are described, which promise to improve existing disease models and advance the understanding of psychiatric conditions.
Abstract: The mammalian brain poses a formidable challenge to the study and treatment of neuropsychiatric diseases, owing to the complex interaction of genetic, epigenetic, and circuit-level mechanisms underlying pathogenesis. Technologies that facilitate functional dissection of distinct brain circuits are necessary for systematic identification of disease origin and therapy. Recent developments in optogenetics technology have begun to address this challenge by enabling precise perturbation of distinct cell types based on molecular signatures, functional projections, and intracellular biochemical signaling pathways. With high temporal precision and reversible neuromodulation, optogenetics promises to improve existing disease models and advance our understanding of psychiatric conditions. In this review, we describe the current state of molecular optogenetic tools and future directions of development.

Journal ArticleDOI
TL;DR: It is concluded that xanthatin displays significant antitumor effects through cell cycle arrest and apoptosis induction in A549 cells, associated with intrinsic apoptosis pathway and disrupted NF-κB signaling.
Abstract: Xanthatin, a natural sesquiterpene lactone, has significant antitumor activity against a variety of cancer cells, yet little is known about its anticancer mechanism. In this study, we demonstrated that xanthatin had obvious dose-/time-dependent cytotoxicity against the human non-small-cell lung cancer (NSCLC) cell line A549. Flow cytometry analysis showed xanthatin induced cell cycle arrest at G2/M phase. Xanthatin also had pro-apoptotic effects on A549 cells as evidenced by Hoechst 33258 staining and annexin V-FITC staining. Mechanistic data revealed that xanthatin downregulated Chk1, Chk2, and phosphorylation of CDC2, which contributed to the cell cycle arrest. Xathatin also increased total p53 protein levels, decreased Bcl-2/Bax ratio and expression of the downstream factors procaspase-9 and procaspase-3, which triggered the intrinsic apoptosis pathway. Furthermore, xanthatin blocked phosphorylation of NF-κB (p65) and IκBa, which might also contribute to its pro-apoptotic effects on A549 cells. Xanthatin also inhibited TNFa induced NF-κB (p65) translocation. We conclude that xanthatin displays significant antitumor effects through cell cycle arrest and apoptosis induction in A549 cells. These effects were associated with intrinsic apoptosis pathway and disrupted NF-κB signaling. These results suggested that xanthatin may have therapeutic potential against NSCLC.

Journal ArticleDOI
TL;DR: A structural ChR model is developed based on characteristic patterns in amino acid sequences of ChR1, ChR2, Volvox ChRs, Mesostigma ChR, and the recently identified ChR of the halophilic alga Dunaliella salina, and in a crucial validation of the model, it successfully reproduce the excitation energy predicted by absorption spectra.

Journal ArticleDOI
Qing Xia1, Zi-Xian Chen1, Yi-Chao Wang1, Yushui Ma1, Feng Zhang1, Wu Che1, Da Fu1, Xiaofeng Wang1 
30 Nov 2012-PLOS ONE
TL;DR: It is demonstrated that the rs10830963 polymorphism is a risk factor for developing impaired glucose regulation and T2D risk prediction and largely disappeared after stratification by ethnicity.
Abstract: Background Melatonin receptor 1B (MTNR1B) belongs to the seven-transmembrane G protein-coupled receptor superfamily involved in insulin secretion, which has attracted considerable attention as a candidate gene for type 2 diabetes (T2D) since it was first identified as a loci associated with fasting plasma glucose level through genome wide association approach. The relationship between MTNR1B and T2D has been reported in various ethnic groups. The aim of this study was to consolidate and summarize published data on the potential of MTNR1B polymorphisms in T2D risk prediction.

Journal Article
TL;DR: MMP8 plays an important role in SPC migration and their recruitment into atherosclerotic lesions and was reduced by incubation of such cells with culture supernatant from SPCs without MMP8 knockdown, and this compensatory effect was abolished by an antibody against soluble E-cadherin.
Abstract: Rationale: Accumulating evidence indicates that stem/progenitor cells (SPCs) represent an important source of cells in atheromas and contribute to lesion formation and progression. Objective: We investigated whether matrix metalloproteinase-8 (MMP8) played a role in SPC migration and their recruitment into atheromas. Methods and Results: We found that SPCs in atheromas expressed MMP8 and that MMP8 knockout significantly reduced SPC numbers in atherosclerotic lesions in apolipoprotein E (ApoE)–deficient mice fed a Western diet. Further in vivo experiments showed that ApoE−/−/MMP8−/− mice injected with stem cells isolated from bone marrows of ApoE−/−/MMP8−/− mice had fewer SPCs in atheromas and smaller lesions than ApoE−/−/MMP8−/− mice injected with stem cells isolated from bone marrows of ApoE−/−/MMP8+/+ mice. Ex vivo experiments showed that MMP8 deficiency inhibited the ability of SPCs to migrate from the arterial lumen and the adventitia into atherosclerotic lesions. In vitro assays indicated that MMP8 facilitated SPC migration across endothelial cells and through Matrigel or collagen I. We also found that MMP8 cleaved a-disintegrin-and-metalloproteinase-domain-10 and that MMP8 deficiency reduced mature a-disintegrin-and-metalloproteinase-domain-10 on SPCs. Knockdown of MMP8 or incubation with the a-disintegrin-and-metalloproteinase-domain-10 inhibitor GI254023X decreased E-cadherin shedding on SPCs. The decrease in migratory ability of SPCs with MMP8 knockdown was reduced by incubation of such cells with culture supernatant from SPCs without MMP8 knockdown, and this compensatory effect was abolished by an antibody against soluble E-cadherin. Conclusions: MMP8 plays an important role in SPC migration and their recruitment into atherosclerotic lesions.

Journal ArticleDOI
TL;DR: Results indicate that the stimulation of iWAT afferents with capsaicin, bradykinin, adenosine, or leptin reflexly increases the RSNA and blood pressure.
Abstract: Injection of leptin into white adipose tissue (WAT) increases sympathetic outflow. The present study was designed to determine the effects of capsaicin and other chemicals in WAT on the sympathetic outflow and blood pressure and the roles of WAT afferents and hypothalamic paraventricular nucleus (PVN) in the adipose afferent reflex (AAR). The AAR was induced by injection of capsaicin, bradykinin, adenosine, adenosine triphosphate (ATP), or leptin into inguinal WAT (iWAT) or retroperitoneal WAT (rWAT) in anesthetized rats. The iWAT injection of capsaicin increased the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) but not the heart rate. Bradykinin, adenosine, or leptin but not ATP in the iWAT caused similar effects to capsaicin on the RSNA and MAP. Intravenous, intramuscular, or intradermal injection of capsaicin had no significant effects on the RSNA and MAP. The effects of capsaicin in rWAT were similar to that in iWAT on the RSNA and MAP. Furthermore, injection of capsaicin into the iWAT increased the WAT afferent nerve activities, WAT efferent nerve activity, and brown adipose tissue efferent nerve activity. The iWAT denervation or chemical lesion of the PVN neurons with kainic acid abolished the AAR induced by the iWAT injection of capsaicin. These results indicate that the stimulation of iWAT afferents with capsaicin, bradykinin, adenosine, or leptin reflexly increases the RSNA and blood pressure. The iWAT afferents and the PVN are involved in the AAR induced by capsaicin in the iWAT.

Journal ArticleDOI
TL;DR: The results suggest that iTregs play a critical role in hepatic IRI by regulating pro-inflammatory and anti-inflammatory function of KCs through TGF-β.

Patent
19 Jan 2012
TL;DR: In this article, compositions, kits and methods useful in the construction of designer transcription activator-like effector (dTALE) polypeptides are described and described.
Abstract: Provided herein are compositions, kits and methods useful in the construction of designer transcription activator-like effector (dTALE) polypeptides.

Journal ArticleDOI
TL;DR: Intracoronary infusion of diltiazem or verapamil can reverse no-reflow more effectively than nitroglycerin during primary PCI for acute myocardial infarction.

Journal ArticleDOI
TL;DR: At initial stage of liver IRI, NK cells increase IL-17A production and promote liver injury.

Journal ArticleDOI
TL;DR: The haploinsufficiency of NIPA2 may be a mechanism underlying the neurological phenotypes of 15q11.2 microdeletions, which are important pathogenic CNVs for CAE with higher frequency in Chinese populations than that previously reported in Caucasians.
Abstract: While pathogenic copy number variations (CNVs) in 15q11.2 were recently identified in Caucasian patients with idiopathic generalized epilepsies (IGEs), the epilepsy-associated gene(s) in this region is/are still unknown. Our study investigated whether the CNVs in 15q11.2 are associated with childhood absence epilepsy (CAE) in Chinese patients and whether the selective magnesium transporter NIPA2 gene affected by 15q11.2 microdeletions is a susceptive gene for CAE. We assessed IGE-related CNVs by Affymetrix SNP 5.0 microarrays in 198 patients with CAE and 198 controls from northern China, and verified the identified CNVs by high-density oligonucleotide-based CGH microarrays. The coding region and exon–intron boundaries of NIPA2 were sequenced in all 380 patients with CAE and 400 controls. 15q11.2 microdeletions were detected in 3 of 198 (1.5%) patients and in no controls. Furthermore, we identified point mutations or indel in a heterozygous state of the NIPA2 gene in 3 out of 380 patients, whereas they were absent in 700 controls (P = 0.043). These mutations included two novel missense mutations (c.532A>T, p.I178F; c.731A>G, p.N244S) and one small novel insertion (c.1002_1003insGAT, p.N334_335EinsD). No NIPA2 mutation was found in 400 normal controls. We first identified that NIPA2, encoding a selective magnesium transporter, is a susceptible gene of CAE, and 15q11.2 microdeletions are important pathogenic CNVs for CAE with higher frequency in Chinese populations than that previously reported in Caucasians. The haploinsufficiency of NIPA2 may be a mechanism underlying the neurological phenotypes of 15q11.2 microdeletions.

Journal ArticleDOI
TL;DR: Genetic validation in’vivo, biochemical assays, and in vitro mutagenesis studies revealed that YtkR2 confers resistance for the bacteria by specifically recognizing and cleaving the YTM-modified base.
Abstract: Resistance is (not) futile: The yatakemycin biosynthetic gene cluster involves the ytkR2 gene, which encodes a protein with homology to a recently discovered bacterial DNA glycosylase. Genetic validation in vivo, biochemical assays, and in vitro mutagenesis studies revealed that YtkR2 confers resistance for the bacteria by specifically recognizing and cleaving the YTM-modified base (see scheme).

Journal ArticleDOI
05 Nov 2012-PLOS ONE
TL;DR: Endogenous Ang-(1–7) in the PVN increases RSNA and MAP and enhances the CSAR, which is mediated by Mas receptors, which contributes to the enhanced sympathetic outflow and CSAR in renovascular hypertension.
Abstract: Background Excessive sympathetic activity contributes to the pathogenesis and progression of hypertension. Enhanced cardiac sympathetic afferent reflex (CSAR) is involved in sympathetic activation. This study was designed to determine the roles of angiotensin (Ang)-(1–7) in paraventricular nucleus (PVN) in modulating sympathetic activity and CSAR and its signal pathway in renovascular hypertension.

Journal ArticleDOI
TL;DR: Qualitative real-time polymerase chain reaction (qRT-PCR) was used to investigate the gene expression profile of Na(+)-K (+)-ATPase, Hsp70 and Hsp90 in megalopa exposed to salinities of 0, 2, 5, 10, and 15 parts per thousand, implying that Na( +)-K(+-ATPases, HSp70 andHsp90 may play an important role in salinity tolerance in
Abstract: Eriocheir sinensis is a euryhaline crab migrating from sea to freshwater habitats during the juvenile stage. We used quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the gene expression profile of Na(+)-K(+)-ATPase, Hsp70 (heat shock protein 70) and Hsp90 in megalopa exposed to salinities of 0, 2, 5, 10, and 15 parts per thousand. Both low and high salinities markedly stimulated expression of Na(+)-K(+)-ATPase, Hsp70 and Hsp90 genes of Chinese mitten crab megalopa; salinity had different effects on Na(+)-K(+)-ATPase, Hsp70 and Hsp90 levels depending on the duration of salinity stress, implying that Na(+)-K(+)-ATPase, Hsp70 and Hsp90 may play an important role in salinity tolerance in this crab species.

Journal ArticleDOI
TL;DR: Findings show that lithium exacerbates hepatic I/R injury by suppressing the expression of GSK-3β/NF-κB-mediated protective genes.

Journal ArticleDOI
Anjing Zhang1, Yulong Bai1, Yongshan Hu1, Feng Zhang1, Yi Wu1, Yang Wang1, Ping Zheng1, Qiang He1 
TL;DR: The findings demonstrate that physical exercise can produce neuroprotective effects, in part by down-regulating p-NR2B expression, and indicates that the appropriate intensity of physical exercise is critical for post-stroke rehabilitation.
Abstract: Background The current study explored the effects of treadmill exercise intensity on functional recovery and hippocampal phospho-NR2B (p-NR2B) expression in cerebral ischemic rats, induced by permanent middle cerebral artery occlusion (MCAO) surgery. Method Adult male Sprague-Dawley rats were randomly divided into four groups, including sham, no exercise (NE), low intensity training (LIT, v = 15 m/min), and moderate intensity training groups (MIT, v = 20 m/min). At different time points, the hippocampal expressions of p-NR2B and total NR2B were examined. In addition, neurological deficit score (NDS), body weight, and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used to evaluate brain infarct volume as assessments of post-stroke functional recovery. In order to investigate the effect of exercise on survival, the mortality rate was also recorded. Results The results showed that treadmill exercise significantly decreased hippocampal expression of p-NR2B but didn't change the total NR2B, compared to the NE group on the 3rd, 7th, and 14th days following MCAO surgery. The effect on changes in p-NR2B levels, body weight, and brain infarct volume were more significant in the LIT compared to the MIT group. Discussion and conclusion The current findings demonstrate that physical exercise can produce neuroprotective effects, in part by down-regulating p-NR2B expression. Furthermore, the appropriate intensity of physical exercise is critical for post-stroke rehabilitation.

Journal ArticleDOI
28 Dec 2012-PLOS ONE
TL;DR: Simulations using the real data from the HapMap project were conducted to evaluate the power and type I error rates of PCA-based MPPAS under various scenarios considering sample sizes, additive and interactive genetic effects.
Abstract: Genome-wide pathway association studies provide novel insight into the biological mechanism underlying complex diseases. Current pathway association studies primarily focus on single important disease phenotype, which is sometimes insufficient to characterize the clinical manifestations of complex diseases. We present a multi-phenotypes pathway association study(MPPAS) approach using principle component analysis(PCA). In our approach, PCA is first applied to multiple correlated quantitative phenotypes for extracting a set of orthogonal phenotypic components. The extracted phenotypic components are then used for pathway association analysis instead of original quantitative phenotypes. Four statistics were proposed for PCA-based MPPAS in this study. Simulations using the real data from the HapMap project were conducted to evaluate the power and type I error rates of PCA-based MPPAS under various scenarios considering sample sizes, additive and interactive genetic effects. A real genome-wide association study data set of bone mineral density (BMD) at hip and spine were also analyzed by PCA-based MPPAS. Simulation studies illustrated the performance of PCA-based MPPAS for identifying the causal pathways underlying complex diseases. Genome-wide MPPAS of BMD detected associations between BMD and KENNY_CTNNB1_TARGETS_UP as well as LONGEVITYPATHWAY pathways in this study. We aim to provide a applicable MPPAS approach, which may help to gain deep understanding the potential biological mechanism of association results for complex diseases.