scispace - formally typeset
M

M. Renaud

Researcher at University of Montpellier

Publications -  242
Citations -  13857

M. Renaud is an academic researcher from University of Montpellier. The author has contributed to research in topics: High Energy Stereoscopic System & Supernova remnant. The author has an hindex of 53, co-authored 230 publications receiving 12353 citations. Previous affiliations of M. Renaud include DSM.

Papers
More filters
Journal ArticleDOI

Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy

Marcos Daniel Actis, +685 more
TL;DR: The ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes as mentioned in this paper, which is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100GeV and above 100 TeV.
Journal ArticleDOI

Introducing the CTA concept

B. S. Acharya, +982 more
TL;DR: The Cherenkov Telescope Array (CTA) as discussed by the authors is a very high-energy (VHE) gamma ray observatory with an international collaboration with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America.
Journal ArticleDOI

Acceleration of petaelectronvolt protons in the Galactic Centre

A. Abramowski, +229 more
- 24 Mar 2016 - 
TL;DR: Deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre are reported, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy, and it is proposed that the supermassive black hole Sagittarius A* is linked to this PeVatron.
MonographDOI

Science with the Cherenkov Telescope Array

B. S. Acharya, +580 more
TL;DR: The Cherenkov Telescope Array (CTA) as mentioned in this paper is the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond, covering a huge range in photon energy from 20 GeV to 300 TeV.