scispace - formally typeset
Search or ask a question

Showing papers by "Michael A. Matthay published in 2020"


Journal ArticleDOI
TL;DR: A critical evaluation of the term cytokine storm and its relevance to COVID-19 is warranted because of the complex interplay of mediators implicated in the acute inflammatory response based on single mediators and at indiscriminate time points.
Abstract: In its most severe form, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), leads to a life-threatening pneumonia and acute respiratory distress syndrome (ARDS). The mortality rate from COVID-19 ARDS can approach 40% to 50%.1,2 Although the mechanisms of COVID-19–induced lung injury are still being elucidated, the term cytokine storm has become synonymous with its pathophysiology, both in scientific publications and the media. Absent convincing data of their effectiveness in COVID-19, drugs such as tocilizumab and sarilumab, which are monoclonal antibodies targeting interleukin (IL)-6 activity, are being used to treat patients; trials of these agents typically cite the cytokine storm as their rationale (NCT04306705, NCT04322773). A critical evaluation of the term cytokine storm and its relevance to COVID-19 is warranted. Cytokine storm has no definition. Broadly speaking, it denotes a hyperactive immune response characterized by the release of interferons, interleukins, tumor-necrosis factors, chemokines, and several other mediators. These mediators are part of a well-conserved innate immune response necessary for efficient clearance of infectious agents. Cytokine storm implies that the levels of released cytokines are injurious to host cells. Distinguishing an appropriate from a dysregulated inflammatory response in the pathophysiology of critical illness, however, has been a major challenge. To add further complexity, most mediators implicated in cytokine storm demonstrate pleotropic downstream effects and are frequently interdependent in their biological activity. The interactions of these mediators and the pathways they inform are neither linear nor uniform. Further, although their quantified levels may suggest severity of responses, they do not necessarily imply pathogenesis. This complex interplay illustrates the limitations of interfering in the acute inflammatory response based on single mediators and at indiscriminate time points. Whyhasthe“cytokinestorm”beensocloselyassociatedwith COVID-19? During the SARS epidemic caused by SARS-CoV-1, the termcytokinestormwasdescribedasafeatureandassociatedwith adverseoutcomes.3 SeveralearlycaseseriesinCOVID-19reported levelsofsomeplasmacytokineselevatedabovethenormalrange. In most cases, however, they are lower than plasma levels in previous cohorts of patients with ARDS. Interleukin-6, a proinflammatory cytokine, is a key mediator in the acute inflammatory response and the purported cytokine storm. The Table summarizes reported IL-6 levels in 5 cohorts of patients with COVID-19,1,2,4-6 each with more than 100 patients, and 3 cohorts of patients with ARDS.7-9 Although the median values are above the normal range in many (but not all) cases, they are lower than the median values typically reported in ARDS. The median values in random-

539 citations


Journal ArticleDOI
01 Dec 2020-JAMA
TL;DR: Among adults hospitalized with respiratory illness from COVID-19, treatment with hydroxychloroquine, compared with placebo, did not significantly improve clinical status at day 14, and these findings do not support the use of hydroxy chloroquine for treatment of CO VID-19 among hospitalized adults.
Abstract: Importance Data on the efficacy of hydroxychloroquine for the treatment of coronavirus disease 2019 (COVID-19) are needed. Objective To determine whether hydroxychloroquine is an efficacious treatment for adults hospitalized with COVID-19. Design, Setting, and Participants This was a multicenter, blinded, placebo-controlled randomized trial conducted at 34 hospitals in the US. Adults hospitalized with respiratory symptoms from severe acute respiratory syndrome coronavirus 2 infection were enrolled between April 2 and June 19, 2020, with the last outcome assessment on July 17, 2020. The planned sample size was 510 patients, with interim analyses planned after every 102 patients were enrolled. The trial was stopped at the fourth interim analysis for futility with a sample size of 479 patients. Interventions Patients were randomly assigned to hydroxychloroquine (400 mg twice daily for 2 doses, then 200 mg twice daily for 8 doses) (n = 242) or placebo (n = 237). Main Outcomes and Measures The primary outcome was clinical status 14 days after randomization as assessed with a 7-category ordinal scale ranging from 1 (death) to 7 (discharged from the hospital and able to perform normal activities). The primary outcome was analyzed with a multivariable proportional odds model, with an adjusted odds ratio (aOR) greater than 1.0 indicating more favorable outcomes with hydroxychloroquine than placebo. The trial included 12 secondary outcomes, including 28-day mortality. Results Among 479 patients who were randomized (median age, 57 years; 44.3% female; 37.2% Hispanic/Latinx; 23.4% Black; 20.1% in the intensive care unit; 46.8% receiving supplemental oxygen without positive pressure; 11.5% receiving noninvasive ventilation or nasal high-flow oxygen; and 6.7% receiving invasive mechanical ventilation or extracorporeal membrane oxygenation), 433 (90.4%) completed the primary outcome assessment at 14 days and the remainder had clinical status imputed. The median duration of symptoms prior to randomization was 5 days (interquartile range [IQR], 3 to 7 days). Clinical status on the ordinal outcome scale at 14 days did not significantly differ between the hydroxychloroquine and placebo groups (median [IQR] score, 6 [4-7] vs 6 [4-7]; aOR, 1.02 [95% CI, 0.73 to 1.42]). None of the 12 secondary outcomes were significantly different between groups. At 28 days after randomization, 25 of 241 patients (10.4%) in the hydroxychloroquine group and 25 of 236 (10.6%) in the placebo group had died (absolute difference, −0.2% [95% CI, −5.7% to 5.3%]; aOR, 1.07 [95% CI, 0.54 to 2.09]). Conclusions and Relevance Among adults hospitalized with respiratory illness from COVID-19, treatment with hydroxychloroquine, compared with placebo, did not significantly improve clinical status at day 14. These findings do not support the use of hydroxychloroquine for treatment of COVID-19 among hospitalized adults. Trial Registration ClinicalTrials.gov:NCT04332991

326 citations


Journal ArticleDOI
TL;DR: The evidence for the existence of elevated plasmin(ogen) in COVID-19 patients with these comorbid conditions is summarized to prove a promising therapeutic target for combating CO VID-19.
Abstract: Patients with hypertension, diabetes, coronary heart disease, cerebrovascular illness, chronic obstructive pulmonary disease, and kidney dysfunction have worse clinical outcomes when infected with SARS-CoV-2, for unknown reasons. The purpose of this review is to summarize the evidence for the existence of elevated plasmin(ogen) in COVID-19 patients with these comorbid conditions. Plasmin, and other proteases, may cleave a newly inserted furin site in the S protein of SARS-CoV-2, extracellularly, which increases its infectivity and virulence. Hyperfibrinolysis associated with plasmin leads to elevated D-dimer in severe patients. The plasmin(ogen) system may prove a promising therapeutic target for combating COVID-19.

317 citations



Journal ArticleDOI
TL;DR: The atlas of collagen-producing cells provides a roadmap for studying the roles of these unique populations in homeostasis and pathologic fibrosis and shows a pro-fibrotic phenotype.
Abstract: Collagen-producing cells maintain the complex architecture of the lung and drive pathologic scarring in pulmonary fibrosis. Here we perform single-cell RNA-sequencing to identify all collagen-producing cells in normal and fibrotic lungs. We characterize multiple collagen-producing subpopulations with distinct anatomical localizations in different compartments of murine lungs. One subpopulation, characterized by expression of Cthrc1 (collagen triple helix repeat containing 1), emerges in fibrotic lungs and expresses the highest levels of collagens. Single-cell RNA-sequencing of human lungs, including those from idiopathic pulmonary fibrosis and scleroderma patients, demonstrate similar heterogeneity and CTHRC1-expressing fibroblasts present uniquely in fibrotic lungs. Immunostaining and in situ hybridization show that these cells are concentrated within fibroblastic foci. We purify collagen-producing subpopulations and find disease-relevant phenotypes of Cthrc1-expressing fibroblasts in in vitro and adoptive transfer experiments. Our atlas of collagen-producing cells provides a roadmap for studying the roles of these unique populations in homeostasis and pathologic fibrosis.

271 citations


Journal ArticleDOI
TL;DR: Pending the development of real-time testing for key biomarkers and prospective validation, these models could facilitate identification of ARDS phenotypes to enable their application in clinical trials and practice.

141 citations



Journal ArticleDOI
TL;DR: This review focuses on classifying ARDS by the associated clinical disorders, physiological data, and radiographic imaging, and considers biologic phenotypes, including plasma protein biomarkers, gene expression, and common causative microbiologic pathogens.
Abstract: Although the acute respiratory distress syndrome (ARDS) is well defined by the development of acute hypoxemia, bilateral infiltrates and non-cardiogenic pulmonary edema, ARDS is heterogeneous in terms of clinical risk factors, physiology of lung injury, microbiology, and biology, potentially explaining why pharmacologic therapies have been mostly unsuccessful in treating ARDS. Identifying phenotypes of ARDS and integrating this information into patient selection for clinical trials may increase the chance for efficacy with new treatments. In this review, we focus on classifying ARDS by the associated clinical disorders, physiological data, and radiographic imaging. We consider biologic phenotypes, including plasma protein biomarkers, gene expression, and common causative microbiologic pathogens. We will also discuss the issue of focusing clinical trials on the patient's phase of lung injury, including prevention, administration of therapy during early acute lung injury, and treatment of established ARDS. A more in depth understanding of the interplay of these variables in ARDS should provide more success in designing and conducting clinical trials and achieving the goal of personalized medicine.

81 citations


Posted ContentDOI
06 Jun 2020-bioRxiv
TL;DR: It is demonstrated that human alveolar type 2 cells, unlike murine AEC2s, are multipotent and able to transdifferentiate into KRT5+ basal cells when co-cultured with primary fibroblasts in 3D organoids.
Abstract: Understanding differential lineage potential of orthologous stem cells across species can shed light on human disease. Here, utilizing 3D organoids, single cell RNAseq, and xenotransplants, we demonstrate that human alveolar type 2 cells (hAEC2s), unlike murine AEC2s, are multipotent and able to transdifferentiate into KRT5+ basal cells when co-cultured with primary fibroblasts in 3D organoids. Trajectory analyses and immunophenotyping of epithelial progenitors in idiopathic pulmonary fibrosis (IPF) indicate that hAEC2s transdifferentiate into metaplastic basal cells through alveolar-basal intermediate (ABI) cells that we also identify in hAEC2-derived organoids. Modulating hAEC2-intrinsic and niche factors dysregulated in IPF can attenuate metaplastic basal cell transdifferentiation and preserve hAEC2 identity. Finally, hAEC2s transplanted into fibrotic immune-deficient murine lungs engraft as either hAEC2s or differentiated KRT5+ basal cells. Our study indicates that hAEC2s-loss and expansion of alveolar metaplastic basal cells in IPF are causally connected, which would not have been revealed utilizing murine AEC2s as a model. HighlightsO_LIHuman AEC2s transdifferentiate into KRT5+ basal cells when accompanied by primary adult human lung mesenchyme in 3D organoid culture. C_LIO_LIAlterations of hAEC2-intrinsic and niche factors dysregulated in IPF can modify metaplastic hAEC2 transdifferentiation. C_LIO_LIhAEC2s engraft into fibrotic lungs of immune-deficient mice and transdifferentiate into metaplastic basal cells. C_LIO_LITranscriptional trajectory analysis suggests that hAEC2s in IPF gives rise to metaplastic basal cells via alveolar-basal intermediate cells. C_LI

67 citations


Journal ArticleDOI
TL;DR: Development of ARDS among ICU patients with sepsis confers increased risk of ICU and in-hospital mortality in addition to other important outcomes, and patients with severe ARDS primarily drove this relationship.
Abstract: Previous studies assessing impact of acute respiratory distress syndrome (ARDS) on mortality have shown conflicting results. We sought to assess the independent association of ARDS with in-hospital mortality among intensive care unit (ICU) patients with sepsis. We studied two prospective sepsis cohorts drawn from the Early Assessment of Renal and Lung Injury (EARLI; n = 474) and Validating Acute Lung Injury markers for Diagnosis (VALID; n = 337) cohorts. ARDS was defined by Berlin criteria. We used logistic regression to compare in-hospital mortality in patients with and without ARDS, controlling for baseline severity of illness. We also estimated attributable mortality, adjusted for illness severity by stratification. ARDS occurred in 195 EARLI patients (41%) and 99 VALID patients (29%). ARDS was independently associated with risk of hospital death in multivariate analysis, even after controlling for severity of illness, as measured by APACHE II (odds ratio [OR] 1.65 (95% confidence interval [CI] 1.02, 2.67), p = 0.04 in EARLI; OR 2.12 (CI 1.16, 3.92), p = 0.02 in VALID). Patients with severe ARDS (P/F < 100) primarily drove this relationship. The attributable mortality of ARDS was 27% (CI 14%, 37%) in EARLI and 37% (CI 10%, 51%) in VALID. ARDS was independently associated with ICU mortality, hospital length of stay (LOS), ICU LOS, and ventilator-free days. Development of ARDS among ICU patients with sepsis confers increased risk of ICU and in-hospital mortality in addition to other important outcomes. Clinical trials targeting patients with severe ARDS will be best poised to detect measurable differences in these outcomes.

58 citations


Journal ArticleDOI
TL;DR: These findings show that Gli1+ MSCs integrate hedgehog signaling as a rheostat to control BMP activation in the progenitor niche to determine regenerative outcome in fibrosis.
Abstract: Aberrant epithelial reprogramming can induce metaplastic differentiation at sites of tissue injury that culminates in transformed barriers composed of scar and metaplastic epithelium. While the plasticity of epithelial stem cells is well characterized, the identity and role of the niche has not been delineated in metaplasia. Here, we show that Gli1+ mesenchymal stromal cells (MSCs), previously shown to contribute to myofibroblasts during scarring, promote metaplastic differentiation of airway progenitors into KRT5+ basal cells. During fibrotic repair, Gli1+ MSCs integrate hedgehog activation signalling to upregulate BMP antagonism in the progenitor niche that promotes metaplasia. Restoring the balance towards BMP activation attenuated metaplastic KRT5+ differentiation while promoting adaptive alveolar differentiation into SFTPC+ epithelium. Finally, fibrotic human lungs demonstrate altered BMP activation in the metaplastic epithelium. These findings show that Gli1+ MSCs integrate hedgehog signalling as a rheostat to control BMP activation in the progenitor niche to determine regenerative outcome in fibrosis.

Journal ArticleDOI
TL;DR: Opportunities to improve critical care trials are identified using strategies to optimize sample size calculations, account for patient and disease heterogeneity, increase the efficiency of trial conduct, maximize the use of trial data, and to refine and standardize the collection of patient-centered and patient-informed outcome measures beyond mortality.
Abstract: Conducting research in critically-ill patient populations is challenging, and most randomized trials of critically-ill patients have not achieved pre-specified statistical thresholds to conclude that the intervention being investigated was beneficial. In 2019, a diverse group of patient representatives, regulators from the USA and European Union, federal grant managers, industry representatives, clinical trialists, epidemiologists, and clinicians convened the First Critical Care Clinical Trialists (3CT) Workshop to discuss challenges and opportunities in conducting and assessing critical care trials. Herein, we present the advantages and disadvantages of available methodologies for clinical trial design, conduct, and analysis, and a series of recommendations to potentially improve future trials in critical care. The 3CT Workshop participants identified opportunities to improve critical care trials using strategies to optimize sample size calculations, account for patient and disease heterogeneity, increase the efficiency of trial conduct, maximize the use of trial data, and to refine and standardize the collection of patient-centered and patient-informed outcome measures beyond mortality.

Posted ContentDOI
29 Oct 2020-bioRxiv
TL;DR: Overzealous and auto-directed antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense.
Abstract: While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a whole-blood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferon-stimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and auto-directed antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense. One Sentence Summary In severe COVID-19 patients, the immune system fails to generate cells that define mild disease; antibodies in their serum actively prevents the successful production of those cells.

Journal ArticleDOI
TL;DR: The important role EVs play in both inducing and attenuating inflammatory lung injury in ARDS as well as in sepsis, the most important clinical cause of ARDS is discussed.
Abstract: Recent research on extracellular vesicles (EVs) has provided new insights into pathogenesis and potential therapeutic options for acute respiratory distress syndrome (ARDS). EVs are membrane-bound anuclear structures that carry important intercellular communication mechanisms, allowing targeted transfer of diverse biologic cargo, including protein, mRNA, and microRNA, among several different cell types. In this review, we discuss the important role EVs play in both inducing and attenuating inflammatory lung injury in ARDS as well as in sepsis, the most important clinical cause of ARDS. We discuss the translational challenges that need to be overcome before EVs can also be used as prognostic biomarkers in patients with ARDS and sepsis. We also consider how EVs may provide a platform for novel therapeutics in ARDS.

Journal ArticleDOI
TL;DR: Plasma sRAGE is genetically regulated during sepsis, and MR analysis indicates that increased plasma s RAGE leads to increased ARDS risk suggesting plasma sRAge acts a causal intermediate in sepsi-related ARDS.
Abstract: Rationale: Acute respiratory distress syndrome (ARDS) lacks known causal biomarkers. Plasma concentrations of sRAGE (soluble receptor for advanced glycation end products) strongly associate with AR...

Journal ArticleDOI
TL;DR: Results suggest that VEA plays an important causal role in the development of EVALI and caused dose-dependent increases in lung water and BAL protein compared to control and JUUL-exposed mice in association with increased BAL neutrophils, oil-laden macrophages, multinucleated giant cells, and inflammatory cytokines.
Abstract: Electronic-cigarette, or vaping, product use-associated lung injury (EVALI) is a syndrome of acute respiratory failure characterized by monocytic and neutrophilic alveolar inflammation. Epidemiological and clinical evidence suggests a role of vitamin E acetate (VEA) in the development of EVALI, yet it remains unclear whether VEA has direct pulmonary toxicity. To test the hypotheses that aerosolized VEA causes lung injury in mice and directly injures human alveolar epithelial cells, we exposed adult mice and primary human alveolar epithelial type II (AT II) cells to an aerosol of VEA generated by a device designed for vaping oils. Outcome measures in mice included lung edema, BAL analysis, histology, and inflammatory cytokines; in vitro outcomes included cell death, cytokine release, cellular uptake of VEA, and gene-expression analysis. Comparison exposures in both models included the popular nicotine-containing JUUL aerosol. We discovered that VEA caused dose-dependent increases in lung water and BAL protein compared with control and JUUL-exposed mice in association with increased BAL neutrophils, oil-laden macrophages, multinucleated giant cells, and inflammatory cytokines. VEA aerosol was also toxic to AT II cells, causing increased cell death and the release of monocyte and neutrophil chemokines. VEA was directly absorbed by AT II cells, resulting in the differential gene expression of several inflammatory biological pathways. Given the epidemiological and clinical characteristics of the EVALI outbreak, these results suggest that VEA plays an important causal role.

Journal ArticleDOI
TL;DR: It is posited that patients with moderate-to-severe COVID-19 pneumonia are likely to benefit from moderate dose corticosteroid treatment when administered relatively late in the disease course, and treatment timing, dosage, and CO VID-19 disease severity determine immune response and viral outcome.
Abstract: Although corticosteroids dampen the dysregulated immune system and sometimes are prescribed as an adjunctive treatment for pneumonia, their effectiveness in the treatment of coronavirus disease 2019 (COVID-19) remains controversial. In this issue of the JCI, Liu and Zhang et al. evaluated corticosteroid treatment in more than 400 patients with severe COVID-19. The authors assessed subjects retrospectively for cardiac and liver injury, shock, ventilation, mortality, and viral clearance. Corticosteroids in severe COVID-19-related acute respiratory distress syndrome (ARDS) were associated with increased mortality and delayed viral clearance. Here, we consider how to reconcile the negative effects of corticosteroids revealed by Liu and Zhang et al. with the favorable effects (reduced mortality) that were described in the RECOVERY trial. We posit that treatment timing, dosage, and COVID-19 severity determine immune response and viral outcome. Patients with moderate-to-severe COVID-19 pneumonia are likely to benefit from moderate-dose corticosteroid treatment when administered relatively late in the disease course.

Journal ArticleDOI
TL;DR: Women comprise less than one-third of first authors and one-quarter of senior authors of critical care research, with minimal increase over the past decade, and female first authors tend to publish in lower-impact journals.
Abstract: Rationale: Gender gaps exist in academic leadership positions in critical care. Peer-reviewed publications are crucial to career advancement, and yet little is known regarding gender differences in...

Journal ArticleDOI
TL;DR: A multidisciplinary working group of investigators identified recommendations for future research focusing on understanding the clinical, physiological, and biological underpinnings of heterogeneity in syndromes, diseases, and treatment-response with the goal of developing targeted, personalized interventions.
Abstract: Preventing, treating, and promoting recovery from critical illness due to pulmonary disease are foundational goals of the critical care community and the National Heart, Lung, and Blood Institute. Decades of clinical research in acute respiratory distress syndrome, acute respiratory failure, pneumonia, and sepsis have yielded improvements in supportive care, which have translated into improved patient outcomes. Novel therapeutics have largely failed to translate from promising pre-clinical findings into improved patient outcomes in late-phase clinical trials. Recent advances in personalized medicine, "big data", causal inference using observational data, novel clinical trial designs, pre-clinical disease modeling, and understanding recovery from acute illness promise to transform the methods of pulmonary and critical care clinical research. To assess the current state, research priorities, and future directions for adult pulmonary and critical care research, the NHLBI assembled a multidisciplinary working group of investigators. This working group identified recommendations for future research, including: (1) focusing on understanding the clinical, physiological, and biological underpinnings of heterogeneity in syndromes, diseases, and treatment-response with the goal of developing targeted, personalized interventions; (2) optimizing pre-clinical models by incorporating comorbidities, co-interventions, and organ support; (3) developing and applying novel clinical trial designs; and (4) advancing mechanistic understanding of injury and recovery in order to develop and test interventions targeted at achieving long-term improvements in the lives of patients and families. Specific areas of research are highlighted as especially promising for making advances in pneumonia, acute hypoxemic respiratory failure, and acute respiratory distress syndrome.



Journal ArticleDOI
TL;DR: New information and novel methods for prognostic and predictive enrichment that may be useful to optimize patient selection and increase the likelihood of positive clinical trials in ARDS are focused on.
Abstract: With the exception of a few successes in trials of supportive care, the majority of interventional clinical trials for acute respiratory distress syndrome (ARDS) have not led to new therapies. To improve the likelihood of benefit from clinical trial interventions in ARDS, clinical trial design must be improved. To optimize trial design, many factors need to be considered including the type of therapy to be tested, the type of trial (phase 2 or 3), how patients will be selected, primary and secondary end-points, and strategy for conduct of the trial, including potential newer trial designs such as platform or adaptive trials. Of these, optimization of patient selection is central to the likelihood of success and is particularly relevant in ARDS, which is a heterogeneous clinical syndrome, not a homogeneous disease. Recent advances including improved understanding of pathophysiologic mechanisms and better tools for outcome prediction in ARDS should facilitate both predictive and prognostic enrichment. This commentary focuses on new information and novel methods for prognostic and predictive enrichment that may be useful to optimize patient selection and increase the likelihood of positive clinical trials in ARDS.

Journal ArticleDOI
TL;DR: This study uses Medicare claims data to identify and assess disparities in the use of advance care planning among adults 65 years or older who died between 2000 and 2015 and received intensive care during the last 30 days of life.
Abstract: This study uses Medicare claims data to identify and assess disparities in the use of advance care planning among adults 65 years or older who died between 2000 and 2015 and received intensive care during the last 30 days of life.

Journal ArticleDOI
TL;DR: Short PBL-TL is strongly associated with worse survival and more severe ARDS in critically ill patients, especially patients with sepsis, and the findings suggest that telomere dysfunction may contribute to outcomes from critical illness.
Abstract: Shorter peripheral blood leukocyte (PBL) telomere length (TL) has been associated with poor outcomes in various chronic lung diseases. Whether PBL-TL is associated with survival from critical illness was tested in this study. We analysed data from a prospective observational cohort study of 937 critically ill patients at Vanderbilt University Medical Center (VUMC). TL was measured by qPCR of DNA isolated from PBL. Findings were validated in an independent cohort of 394 critically ill patients with sepsis admitted to the University of California San Francisco (UCSF). In the VUMC cohort, shorter PBL-TL was associated with worse 90-day survival (adjusted HR 1.3 per 1 kb TL decrease, 95%CI [1.1–1.6], p=0.004); in subgroup analyses, shorter PBL-TL was associated with worse 90-day survival for patients with sepsis (adjusted HR 1.5 per 1 kb TL decrease, 95%CI [1.2–2.0], p=0.001) but not trauma. Although not associated with development of ARDS, among ARDS subjects, shorter PBL-TL was associated with more severe ARDS (OR 1.7 per 1 kb TL decrease, 95%CI [1.2–2.5], p=0.006). The associations of PBL-TL with survival (adjusted HR 1.6 per 1 kb TL decrease, 95%CI [1.2–2.1], p=0.003) and risk for developing severe ARDS (OR 2.5 per 1 kb TL decrease, 95%CI [1.1–6.3], p-value=0.044) were validated in the UCSF cohort. Short PBL-TL is strongly associated with worse survival and more severe ARDS in critically ill patients, especially patients with sepsis. These findings suggest that telomere dysfunction may contribute to outcomes from critical illness.

Journal ArticleDOI
TL;DR: Endobronchial hMSC therapy in an ovine model of ARDS and ECMO can impair membrane oxygenator function and does not improve oxygenation, and these data do not recommend the safe use of hMSCs during venovenous ECMO.
Abstract: Rationale: Mesenchymal stromal cell (MSC) therapy is a promising intervention for acute respiratory distress syndrome (ARDS), although trials to date have not investigated its use alongside extracorporeal membrane oxygenation (ECMO). Recent preclinical studies have suggested that combining these interventions may attenuate the efficacy of ECMO.Objectives: To determine the safety and efficacy of MSC therapy in a model of ARDS and ECMO.Methods: ARDS was induced in 14 sheep, after which they were established on venovenous ECMO. Subsequently, they received either endobronchial induced pluripotent stem cell-derived human MSCs (hMSCs) (n = 7) or cell-free carrier vehicle (vehicle control; n = 7). During ECMO, a low Vt ventilation strategy was employed in addition to protocolized hemodynamic support. Animals were monitored and supported for 24 hours. Lung tissue, bronchoalveolar fluid, and plasma were analyzed, in addition to continuous respiratory and hemodynamic monitoring.Measurements and Main Results: The administration of hMSCs did not improve oxygenation (PaO2/FiO2 mean difference = -146 mm Hg; P = 0.076) or pulmonary function. However, histological evidence of lung injury (lung injury score mean difference = -0.07; P = 0.04) and BAL IL-8 were reduced. In addition, hMSC-treated animals had a significantly lower cumulative requirement for vasopressor. Despite endobronchial administration, animals treated with hMSCs had a significant elevation in transmembrane oxygenator pressure gradients. This was accompanied by more pulmonary artery thromboses and adherent hMSCs found on explanted oxygenator fibers.Conclusions: Endobronchial hMSC therapy in an ovine model of ARDS and ECMO can impair membrane oxygenator function and does not improve oxygenation. These data do not recommend the safe use of hMSCs during venovenous ECMO.

Journal ArticleDOI
TL;DR: A combination of inflammatory (systemic inflammatory response syndrome) and organ dysfunction (Sequential Organ Failure Assessment) criteria may enhance timely electronic health record-based sepsis identification in greater than 50% of patients.
Abstract: Objectives Early identification of sepsis is critical to improving patient outcomes. Impact of the new sepsis definition (Sepsis-3) on timing of recognition in the emergency department has not been evaluated. Our study objective was to compare time to meeting systemic inflammatory response syndrome (Sepsis-2) criteria, Sequential Organ Failure Assessment (Sepsis-3) criteria, and quick Sequential Organ Failure Assessment criteria using electronic health record data. Design Retrospective, observational study. Setting The emergency department at the University of California, San Francisco. Patients Emergency department encounters between June 2012 and December 2016 for patients greater than or equal to 18 years old with blood cultures ordered, IV antibiotic receipt, and identification with sepsis via systemic inflammatory response syndrome or Sequential Organ Failure Assessment within 72 hours of emergency department presentation. Interventions None. Measurements and main results We analyzed timestamped electronic health record data from 16,612 encounters identified as sepsis by greater than or equal to 2 systemic inflammatory response syndrome criteria or a Sequential Organ Failure Assessment score greater than or equal to 2. The primary outcome was time from emergency department presentation to meeting greater than or equal to 2 systemic inflammatory response syndrome criteria, Sequential Organ Failure Assessment greater than or equal to 2, and/or greater than or equal to 2 quick Sequential Organ Failure Assessment criteria. There were 9,087 patients (54.7%) that met systemic inflammatory response syndrome-first a median of 26 minutes post-emergency department presentation (interquartile range, 0-109 min), with 83.1% meeting Sequential Organ Failure Assessment criteria a median of 118 minutes later (interquartile range, 44-401 min). There were 7,037 patients (42.3%) that met Sequential Organ Failure Assessment-first, a median of 113 minutes post-emergency department presentation (interquartile range, 60-251 min). Quick Sequential Organ Failure Assessment was met in 46.4% of patients a median of 351 minutes post-emergency department presentation (interquartile range, 67-1,165 min). Adjusted odds of in-hospital mortality were 39% greater in patients who met systemic inflammatory response syndrome-first compared with those who met Sequential Organ Failure Assessment-first (odds ratio, 1.39; 95% CI, 1.20-1.61). Conclusions Systemic inflammatory response syndrome and Sequential Organ Failure Assessment initially identified distinct populations. Using systemic inflammatory response syndrome resulted in earlier electronic health record sepsis identification in greater than 50% of patients. Using Sequential Organ Failure Assessment alone may delay identification. Using systemic inflammatory response syndrome alone may lead to missed sepsis presenting as acute organ dysfunction. Thus, a combination of inflammatory (systemic inflammatory response syndrome) and organ dysfunction (Sequential Organ Failure Assessment) criteria may enhance timely electronic health record-based sepsis identification.

Journal ArticleDOI
TL;DR: The potential use of MSC-based cell therapies for CF or other lung diseases may not be warranted in the presence of Aspergillus, according to the results of a comparison of effects of ex vivo MSC exposure to clinical bronchoalveolar lavage fluid samples.
Abstract: Growing evidence demonstrates that human mesenchymal stromal cells (MSCs) modify their in vivo anti-inflammatory actions depending on the specific inflammatory environment encountered. Understanding this better is crucial to refine MSC-based cell therapies for lung and other diseases. Using acute exacerbations of cystic fibrosis (CF) lung disease as a model, the effects of ex vivo MSC exposure to clinical bronchoalveolar lavage fluid (BALF) samples, as a surrogate for the in vivo clinical lung environment, on MSC viability, gene expression, secreted cytokines, and mitochondrial function were compared with effects of BALF collected from healthy volunteers. CF BALF samples that cultured positive for Aspergillus sp. (Asp) induced rapid MSC death, usually within several hours of exposure. Further analyses suggested the fungal toxin gliotoxin as a potential mediator contributing to CF BALF-induced MSC death. RNA sequencing analyses of MSCs exposed to either Asp+ or Asp- CF BALF samples identified a number of differentially expressed transcripts, including those involved in interferon signaling, antimicrobial gene expression, and cell death. Toxicity did not correlate with bacterial lung infections. These results suggest that the potential use of MSC-based cell therapies for CF or other lung diseases may not be warranted in the presence of Aspergillus.

Journal ArticleDOI
TL;DR: This work has tested whether plasmin cleaves epithelial sodium channels (ENaC) to resolve lung oedema fluid and found that the former is more likely to be resolved than the latter.
Abstract: BACKGROUND AND PURPOSE Lung oedema in association with suppressed fibrinolysis is a hallmark of lung injury. Here, we have tested whether plasmin cleaves epithelial sodium channels (ENaC) to resolve lung oedema fluid. EXPERIMENTAL APPROACH Human lungs and airway acid-instilled mice were used for analysing fluid resolution. In silico prediction, mutagenesis, Xenopus oocytes, immunoblotting, voltage clamp, mass spectrometry, and protein docking were combined for identifying plasmin cleavage sites. KEY RESULTS Plasmin improved lung fluid resolution in both human lungs ex vivo and injured mice. Plasmin activated αβγENaC channels in oocytes in a time-dependent manner. Deletion of four consensus proteolysis tracts (αΔ432-444, γΔ131-138, γΔ178-193, and γΔ410-422) eliminated plasmin-induced activation significantly. Further, immunoblotting assays identified 7 cleavage sites (K126, R135, K136, R153, K168, R178, K179) for plasmin to trim both furin-cleaved C-terminal fragments and full-length human γENaC proteins. In addition, 9 new sites (R122, R137, R138, K150, K170, R172, R180, K181, K189) in synthesized peptides were found to be cleaved by plasmin. These cleavage sites were located in the finger and the thumb, particularly the GRIP domain of human ENaC 3D model composed of two proteolytic centres for plasmin. Novel uncleaved sites beyond the GRIP domain in both α and γ subunits were identified to interrupt the plasmin cleavage-induced conformational change in ENaC channel complexes. Additionally, plasmin could regulate ENaC activity via the G protein signal. CONCLUSION AND IMPLICATIONS Plasmin can cleave ENaC to improve blood-gas exchange by resolving oedema fluid and could be a potent therapy for oedematous lungs.

Journal ArticleDOI
TL;DR: Whether sufficient evidence exists to perform preclinical trials of subphenotype-targeted therapies, prior to potential clinical translation, is determined.
Abstract: Subphenotypes were recently reported within clinical acute respiratory distress syndrome (ARDS), with distinct outcomes and therapeutic responses. Experimental models have long been used to mimic features of ARDS pathophysiology, but the presence of distinct subphenotypes among preclinical ARDS remains unknown. This review will investigate whether: 1) subphenotypes can be identified among preclinical ARDS models; 2) such subphenotypes can identify some responsive traits. We will include comparative preclinical (in vivo and ex vivo) ARDS studies published between 2009 and 2019 in which pre-specified therapies were assessed (interleukin (IL)-10, IL-2, stem cells, beta-agonists, corticosteroids, fibroblast growth factors, modulators of the receptor for advanced glycation end-products pathway, anticoagulants, and halogenated agents) and outcomes compared to a control condition. The primary outcome will be a composite of the four key features of preclinical ARDS as per the American Thoracic Society consensus conference (histologic evidence of lung injury, altered alveolar-capillary barrier, lung inflammatory response, and physiological dysfunction). Secondary outcomes will include the single components of the primary composite outcome, net alveolar fluid clearance, and death. MEDLINE, Embase, and Cochrane databases will be searched electronically and data from eligible studies will be extracted, pooled, and analyzed using random-effects models. Individual study reporting will be assessed according to the Animal Research: Reporting of In Vivo Experiments guidelines. Meta-regressions will be performed to identify subphenotypes prior to comparing outcomes across subphenotypes and treatment effects. This study will inform on the presence and underlying pathophysiological features of subphenotypes among preclinical models of ARDS and should help to determine whether sufficient evidence exists to perform preclinical trials of subphenotype-targeted therapies, prior to potential clinical translation. PROSPERO (ID: CRD42019157236).

Journal ArticleDOI
TL;DR: Clinician recognition of acute respiratory distress syndrome is associated with both systemic and respiratory severity of illness and is also associated with use of low tidal volume ventilation.
Abstract: OBJECTIVES The acute respiratory distress syndrome is common in critically ill patients. Recognition is crucial because acute respiratory distress syndrome is associated with a high mortality rate, and low tidal volume ventilation improves mortality. However, acute respiratory distress syndrome often goes unrecognized. Risk factors for under-recognition and trends over time have not been fully described. DESIGN Retrospective chart review of patients with acute respiratory distress syndrome from a prospective cohort study of critically ill patients. For each patient's ICU stay, we searched the chart for terms that indicated that acute respiratory distress syndrome was diagnosed, in the differential diagnosis, or treated with low tidal volume ventilation. SETTING ICUs at a tertiary hospital at the University of California, San Francisco between 2008 and 2016. PATIENTS Critically ill patients with acute respiratory distress syndrome. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Acute respiratory distress syndrome was recognized in 70% of patients, and recognition increased from 60% in 2008-2009 to 92% in 2016 (p = 0.004). Use of tidal volumes less than 6.5 mL/kg also increased (p < 0.001) from 20% to 92%. Increased acute respiratory distress syndrome severity (p = 0.01) and vasopressor use (p = 0.04) were associated with greater recognition. Clinician diagnosis of acute respiratory distress syndrome and inclusion of acute respiratory distress syndrome in the differential diagnosis were associated with tidal volumes less than 6.5 mL/kg (51% use of tidal volume ≤ 6.5 mL/kg if acute respiratory distress syndrome recognized vs 15% if not recognized; p = 0.002). Diagnosing acute respiratory distress syndrome was associated with lower tidal volume in multivariate analysis. CONCLUSIONS Although acute respiratory distress syndrome recognition and low tidal volume ventilation use have increased over time, they remain less than universal. Clinician recognition of acute respiratory distress syndrome is associated with both systemic and respiratory severity of illness and is also associated with use of low tidal volume ventilation.