scispace - formally typeset
Search or ask a question

Showing papers by "Russell A. Poldrack published in 2018"


Journal ArticleDOI
Jeanne E. Savage1, Philip R. Jansen2, Philip R. Jansen1, Sven Stringer1, Kyoko Watanabe1, Julien Bryois3, Christiaan de Leeuw1, Mats Nagel, Swapnil Awasthi4, Peter B. Barr5, Jonathan R. I. Coleman6, Katrina L. Grasby7, Anke R. Hammerschlag1, Jakob Kaminski4, Robert Karlsson3, Eva Krapohl8, Max Lam, Marianne Nygaard9, Chandra A. Reynolds10, Joey W. Trampush11, Hannah Young12, Delilah Zabaneh8, Sara Hägg3, Narelle K. Hansell13, Ida K. Karlsson3, Sten Linnarsson3, Grant W. Montgomery7, Grant W. Montgomery13, Ana B. Muñoz-Manchado3, Erin Burke Quinlan8, Gunter Schumann8, Nathan G. Skene3, Nathan G. Skene14, Bradley T. Webb5, Tonya White2, Dan E. Arking15, Dimitrios Avramopoulos15, Robert M. Bilder16, Panos Bitsios17, Katherine E. Burdick18, Katherine E. Burdick19, Katherine E. Burdick20, Tyrone D. Cannon21, Ornit Chiba-Falek, Andrea Christoforou22, Elizabeth T. Cirulli, Eliza Congdon16, Aiden Corvin23, Gail Davies24, Ian J. Deary24, Pamela DeRosse25, Pamela DeRosse26, Dwight Dickinson27, Srdjan Djurovic28, Srdjan Djurovic29, Gary Donohoe30, Emily Drabant Conley, Johan G. Eriksson31, Thomas Espeseth32, Nelson A. Freimer16, Stella G. Giakoumaki17, Ina Giegling33, Michael Gill23, David C. Glahn21, Ahmad R. Hariri34, Alex Hatzimanolis35, Alex Hatzimanolis36, Matthew C. Keller37, Emma Knowles21, Deborah C. Koltai34, Bettina Konte33, Jari Lahti31, Stephanie Le Hellard28, Todd Lencz25, Todd Lencz26, David C. Liewald24, Edythe D. London16, Astri J. Lundervold28, Anil K. Malhotra26, Anil K. Malhotra25, Ingrid Melle28, Ingrid Melle32, Derek W. Morris30, Anna C. Need38, William Ollier39, Aarno Palotie40, Aarno Palotie31, Aarno Palotie20, Antony Payton39, Neil Pendleton41, Russell A. Poldrack42, Katri Räikkönen31, Ivar Reinvang32, Panos Roussos18, Panos Roussos19, Dan Rujescu33, Fred W. Sabb43, Matthew A. Scult34, Olav B. Smeland32, Nikolaos Smyrnis35, Nikolaos Smyrnis36, John M. Starr24, Vidar M. Steen28, Nikos C. Stefanis35, Nikos C. Stefanis36, Richard E. Straub15, Kjetil Sundet32, Henning Tiemeier2, Aristotle N. Voineskos44, Daniel R. Weinberger15, Elisabeth Widen31, Jin Yu, Gonçalo R. Abecasis45, Ole A. Andreassen32, Gerome Breen6, Lene Christiansen9, Birgit Debrabant9, Danielle M. Dick5, Andreas Heinz4, Jens Hjerling-Leffler3, M. Arfan Ikram46, Kenneth S. Kendler5, Nicholas G. Martin7, Sarah E. Medland7, Nancy L. Pedersen3, Robert Plomin8, Tinca J. C. Polderman1, Stephan Ripke4, Stephan Ripke47, Stephan Ripke20, Sophie van der Sluis, Patrick Sullivan3, Patrick Sullivan48, Scott I. Vrieze12, Margaret J. Wright13, Danielle Posthuma1 
TL;DR: A large-scale genetic association study of intelligence identifies 190 new loci and implicates 939 new genes related to neurogenesis, neuron differentiation and synaptic structure, a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
Abstract: Intelligence is highly heritable1 and a major determinant of human health and well-being2. Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.

800 citations


Posted ContentDOI
06 May 2018-bioRxiv
TL;DR: FMRIPrep has the potential to transform fMRI research by equipping neuroscientists with a high-quality, robust, easy-to-use and transparent preprocessing workflow which can help ensure the validity of inference and the interpretability of their results.
Abstract: Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each new dataset, building upon a large inventory of tools available for each step. The complexity of these workflows has snowballed with rapid advances in MR data acquisition and image processing techniques. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for task-based and resting fMRI data. FMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing with no manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software-testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection comprising participants from 54 different studies in the OpenfMRI repository. We review the distinctive features of fMRIPrep in a qualitative comparison to other preprocessing workflows. We demonstrate that fMRIPrep achieves higher spatial accuracy as it introduces less uncontrolled spatial smoothness than one commonly used preprocessing tool. FMRIPrep has the potential to transform fMRI research by equipping neuroscientists with a high-quality, robust, easy-to-use and transparent preprocessing workflow which can help ensure the validity of inference and the interpretability of their results.

684 citations


Journal ArticleDOI
Gail Davies1, Max Lam, Sarah E. Harris1, Joey W. Trampush2  +254 moreInstitutions (79)
TL;DR: In this paper, the authors combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci associated with general cognitive function.
Abstract: General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10-8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.

421 citations



Journal ArticleDOI
29 Jan 2018-eLife
TL;DR: Increases in neural gain directed the network through an abrupt dynamical transition, leading to an integrated network topology that was maximal in frontoparietal ‘rich club’ regions, and this results support the hypothesis that neural gain modulation has the computational capacity to mediate the balance between integration and segregation in the brain.
Abstract: Cognitive function relies on a dynamic, context-sensitive balance between functional integration and segregation in the brain. Previous work has proposed that this balance is mediated by global fluctuations in neural gain by projections from ascending neuromodulatory nuclei. To test this hypothesis in silico, we studied the effects of neural gain on network dynamics in a model of large-scale neuronal dynamics. We found that increases in neural gain directed the network through an abrupt dynamical transition, leading to an integrated network topology that was maximal in frontoparietal ‘rich club’ regions. This gain-mediated transition was also associated with increased topological complexity, as well as increased variability in time-resolved topological structure, further highlighting the potential computational benefits of the gain-mediated network transition. These results support the hypothesis that neural gain modulation has the computational capacity to mediate the balance between integration and segregation in the brain.

131 citations


Journal ArticleDOI
TL;DR: It is demonstrated that aggregating independent task-fMRI studies can provide a more precise global atlas of selective associations between brain and cognition, and it is shown that it can accurately decode the cognitive concepts recruited in new tasks.
Abstract: To map the neural substrate of mental function, cognitive neuroimaging relies on controlled psychological manipulations that engage brain systems associated with specific cognitive processes. In order to build comprehensive atlases of cognitive function in the brain, it must assemble maps for many different cognitive processes, which often evoke overlapping patterns of activation. Such data aggregation faces contrasting goals: on the one hand finding correspondences across vastly different cognitive experiments, while on the other hand precisely describing the function of any given brain region. Here we introduce a new analysis framework that tackles these difficulties and thereby enables the generation of brain atlases for cognitive function. The approach leverages ontologies of cognitive concepts and multi-label brain decoding to map the neural substrate of these concepts. We demonstrate the approach by building an atlas of functional brain organization based on 30 diverse functional neuroimaging studies, totaling 196 different experimental conditions. Unlike conventional brain mapping, this functional atlas supports robust reverse inference: predicting the mental processes from brain activity in the regions delineated by the atlas. To establish that this reverse inference is indeed governed by the corresponding concepts, and not idiosyncrasies of experimental designs, we show that it can accurately decode the cognitive concepts recruited in new tasks. These results demonstrate that aggregating independent task-fMRI studies can provide a more precise global atlas of selective associations between brain and cognition.

59 citations


Journal ArticleDOI
24 Aug 2018
TL;DR: The results demonstrate that the manipulation of central catecholamine levels leads to a reorganization of the functional connectome in a manner that is sensitive to ongoing cognitive demands.
Abstract: The human brain is able to flexibly adapt its information processing capacity to meet a variety of cognitive challenges. Recent evidence suggests that this flexibility is reflected in the dynamic r...

58 citations


Journal ArticleDOI
TL;DR: The ability to accurately predict violence and other forms of serious antisocial behavior would provide important societal benefits, and there is substantial enthusiasm for the potential predictive accuracy of neuroimaging techniques as discussed by the authors.

46 citations


Journal ArticleDOI
TL;DR: This work will provide a structured, holistic account of self-regulation in the form of an explicit ontology, which will better clarify the pattern of deficits related to maladaptive health behavior, and provide direction for more effective behavior change interventions.

42 citations


Journal ArticleDOI
TL;DR: Supporting a role for short-term memory in massed learning, a significant positive correlation between initial learning and working memory capacity is found and results indicate that single-session learning tasks engage partially distinct learning mechanisms from distributed training.
Abstract: Over the past few decades, neuroscience research has illuminated the neural mechanisms supporting learning from reward feedback. Learning paradigms are increasingly being extended to study mood and psychiatric disorders as well as addiction. However, one potentially critical characteristic that this research ignores is the effect of time on learning: human feedback learning paradigms are usually conducted in a single rapidly paced session, whereas learning experiences in ecologically relevant circumstances and in animal research are almost always separated by longer periods of time. In our experiments, we examined reward learning in short condensed sessions distributed across weeks versus learning completed in a single “massed” session in male and female participants. As expected, we found that after equal amounts of training, accuracy was matched between the spaced and massed conditions. However, in a 3-week follow-up, we found that participants exhibited significantly greater memory for the value of spaced-trained stimuli. Supporting a role for short-term memory in massed learning, we found a significant positive correlation between initial learning and working memory capacity. Neurally, we found that patterns of activity in the medial temporal lobe and prefrontal cortex showed stronger discrimination of spaced- versus massed-trained reward values. Further, patterns in the striatum discriminated between spaced- and massed-trained stimuli overall. Our results indicate that single-session learning tasks engage partially distinct learning mechanisms from distributed training. Our studies begin to address a large gap in our knowledge of human learning from reinforcement, with potential implications for our understanding of mood disorders and addiction. SIGNIFICANCE STATEMENT Humans and animals learn to associate predictive value with stimuli and actions, and these values then guide future behavior. Such reinforcement-based learning often happens over long time periods, in contrast to most studies of reward-based learning in humans. In experiments that tested the effect of spacing on learning, we found that associations learned in a single massed session were correlated with short-term memory and significantly decayed over time, whereas associations learned in short massed sessions over weeks were well maintained. Additionally, patterns of activity in the medial temporal lobe and prefrontal cortex discriminated the values of stimuli learned over weeks but not minutes. These results highlight the importance of studying learning over time, with potential applications to drug addiction and psychiatry.

37 citations


Journal ArticleDOI
TL;DR: This paper proposed FDR smoothing, an empirical-Bayes method for exploiting spatial structure in large multiple-testing problems, which automatically finds spatially localized regions of significant test statistics and relaxes the threshold of statistical significance within these regions, and tightens it elsewhere, in a manner that controls the overall false discovery rate at a given level.
Abstract: We present false discovery rate (FDR) smoothing, an empirical-Bayes method for exploiting spatial structure in large multiple-testing problems. FDR smoothing automatically finds spatially localized regions of significant test statistics. It then relaxes the threshold of statistical significance within these regions, and tightens it elsewhere, in a manner that controls the overall false discovery rate at a given level. This results in increased power and cleaner spatial separation of signals from noise. The approach requires solving a nonstandard high-dimensional optimization problem, for which an efficient augmented-Lagrangian algorithm is presented. In simulation studies, FDR smoothing exhibits state-of-the-art performance at modest computational cost. In particular, it is shown to be far more robust than existing methods for spatially dependent multiple testing. We also apply the method to a dataset from an fMRI experiment on spatial working memory, where it detects patterns that are much more b...


Journal ArticleDOI
TL;DR: An attempt to unify these disconnected communities in cognitive science, artificial intelligence, and neuroscience with a new conference called Cognitive Computational Neuroscience (CCN).

Posted ContentDOI
02 Aug 2018-bioRxiv
TL;DR: Findings provide a mechanistic basis for understanding the PD ‘Off’ state and provide a further conceptual link with network-level reconfiguration, and highlight the mechanisms responsible for pathological and compensatory change in Parkinson’s disease.
Abstract: Parkinsons disease is primarily characterised by diminished dopaminergic function, however the impact of these impairments on large-scale brain dynamics remains unclear. It has been difficult to disentangle the direct effects of Parkinsons disease from compensatory changes that reconfigure the functional signature of the whole brain network. To examine the causal role of dopamine depletion in network-level topology, we investigated time-varying network structure in 37 individuals with idiopathic Parkinsons disease, both On and Off dopamine replacement therapy, along with 50 age-matched, healthy control subjects using resting-state functional MRI. By tracking dynamic network-level topology, we found that the Parkinsons disease Off state was associated with greater network-level integration than in the On state. The extent of integration in the Off state inversely correlated with motor symptom severity, suggesting that a shift toward a more integrated network topology may be a compensatory mechanism associated with preserved motor function in the dopamine depleted Off state. Furthermore, we were able to demonstrate that measures of both cognitive and brain reserve (i.e. premorbid intelligence and whole brain grey matter volume) had a positive relationship with the relative increase in network integration observed in the dopaminergic Off state. This suggests that each of these factors plays an important role in promoting network integration in the dopaminergic Off state. Our findings provide a mechanistic basis for understanding the PD Off state and provide a further conceptual link with network-level reconfiguration. Together, our results highlight the mechanisms responsible for pathological and compensatory change in Parkinsons disease.

Posted ContentDOI
21 Sep 2018-bioRxiv
TL;DR: This work derived a comprehensive functional parcellation of the cerebellar cortex, and evaluated it by predicting functional boundaries in a novel set of tasks, providing significant improvements over existing parcellations derived from task-free data.
Abstract: There is compelling evidence that the human cerebellum is engaged in a wide array of motor and cognitive tasks. A fundamental question centers on whether the cerebellum is organized into distinct functional sub-regions. To address this question, we employed a rich task battery, designed to tap into a broad range of cognitive processes. During four functional magnetic resonance imaging (fMRI) sessions, participants performed a battery of 26 diverse tasks comprising 47 unique conditions. Using the data from this multi-domain task battery, we derived a comprehensive functional parcellation of the cerebellar cortex, and evaluated it by predicting functional boundaries in a novel set of tasks. The new parcellation successfully identified distinct functional sub-regions, providing significant improvements over existing parcellations derived from task-free data. Lobular boundaries, commonly used to summarize functional data, did not coincide with functional subdivisions. This multi-domain task approach offers novel insights into the functional heterogeneity of the cerebellar cortex.

Posted ContentDOI
23 May 2018-bioRxiv
TL;DR: It is shown that large-scale neuronal activity converges onto a low dimensional manifold that facilitates the dynamic execution of diverse task states and advances the understanding of functional brain organization by emphasizing the interface between low dimensional neural activity, network topology, neuromodulatory systems and cognitive function.
Abstract: The human brain integrates diverse cognitive processes into a coherent whole, shifting fluidly as a function of changing environmental demands. Despite recent progress, the neurobiological mechanisms responsible for this dynamic system-level integration remain poorly understood. Here, we used multi-task fMRI data from the Human Connectome Project to examine the spatiotemporal architecture of cognition in the human brain. By investigating the spatial, dynamic and molecular signatures of system-wide neural activity across a range of cognitive tasks, we show that large-scale neuronal activity converges onto a low dimensional manifold that facilitates the dynamic execution of diverse task states. Flow within this attractor space is associated with dissociable cognitive functions, and with unique patterns of network-level topology and information processing complexity. The axes of the low-dimensional neurocognitive architecture align with regional differences in the density of neuromodulatory receptors, which in turn relate to distinct signatures of network controllability estimated from the structural connectome. These results advance our understanding of functional brain organization by emphasizing the interface between low dimensional neural activity, network topology, neuromodulatory systems and cognitive function.

Journal ArticleDOI
30 Jul 2018-PLOS ONE
TL;DR: Applying spacing strategies to training paradigms that target automatic processes could prove a useful tool for the long-term maintenance of health improvement goals with the development of real-world behavioral change paradigsms that incorporate distributed practice principles.
Abstract: The maintenance of behavioral change over the long term is essential to achieve public health goals such as combatting obesity and drug use. Previous work by our group has demonstrated a reliable shift in preferences for appetitive foods following a novel non-reinforced training paradigm. In the current studies, we tested whether distributing training trials over two consecutive days would affect preferences immediately after training as well as over time at a one-month follow-up. In four studies, three different designs and an additional pre-registered replication of one sample, we found that spacing of cue-approach training induced a shift in food choice preferences over one month. The spacing and massing schedule employed governed the long-term changes in choice behavior. Applying spacing strategies to training paradigms that target automatic processes could prove a useful tool for the long-term maintenance of health improvement goals with the development of real-world behavioral change paradigms that incorporate distributed practice principles.

Posted ContentDOI
18 Feb 2018-bioRxiv
TL;DR: Analysis of task-related fMRI data from the Human Connectome Project revealed a core brain system that fluctuates in accordance with cognitive demands, bringing new brain systems on-line in accordancewith changing task demands, while maximizing temporal information processing complexity.
Abstract: The human brain seamlessly integrates innumerable cognitive functions into a coherent whole, shifting with fluidity between changing task demands. To test the hypothesis that the brain contains a core dynamic network that integrates specialized regions across a range of unique task demands, we investigated whether brain activity across multiple cognitive tasks could be embedded within a relatively low dimensional, dynamic manifold. Analysis of task-related fMRI data from the Human Connectome Project revealed a core brain system that fluctuates in accordance with cognitive demands, bringing new brain systems on-line in accordance with changing task demands, while maximizing temporal information processing complexity. Regional differences in noradrenergic neurotransmitter receptor density align with this integrative core, providing a biologically plausible mechanism for the control of global brain dynamics. Our results advance a unique window into functional brain organization that emphasizes the confluence between low dimensional neural activity, network topology, neuromodulator systems and cognitive function.

Journal ArticleDOI
TL;DR: The Organization for Human Brain Mapping (OHBM) has led such efforts by recently introducing the OHBM Replication Award, and other communities can adopt this approach to promote replications and reduce career cost for researchers performing them.
Abstract: Making replication studies widely conducted and published requires new incentives. Academic awards can provide such incentives by highlighting the best and most important replications. The Organization for Human Brain Mapping (OHBM) has led such efforts by recently introducing the OHBM Replication Award. Other communities can adopt this approach to promote replications and reduce career cost for researchers performing them.

Proceedings Article
01 Jan 2018
TL;DR: A novel Bayesian model is proposed which estimates covariances which vary smoothly over time, with an instantaneous decomposition into a collection of spatially sparse components – resulting in parsimonious and highly interpretable estimates of dynamic brain connectivity.
Abstract: Human brain activity as measured by fMRI exhibits strong correlations between brain regions which are believed to vary over time. Importantly, dynamic connectivity has been linked to individual differences in physiology, psychology and behavior, and has shown promise as a biomarker for disease. The state of the art in computational neuroimaging is to estimate the brain networks as relatively short sliding window covariance matrices, which leads to high variance estimates, thereby resulting in high overall error. This manuscript proposes a novel Bayesian model for dynamic brain connectivity. Motivated by the underlying neuroscience, the model estimates covariances which vary smoothly over time, with an instantaneous decomposition into a collection of spatially sparse components – resulting in parsimonious and highly interpretable estimates of dynamic brain connectivity. Simulated results are presented to illustrate the performance of the model even when it is mis-specified. For real brain imaging data with unknown ground truth, in addition to qualitative evaluation, we devise a simple classification task which suggests that the estimated brain networks better capture the underlying structure.


Posted Content
TL;DR: In this paper, the authors argue that openness and transparency are critical for reproducibility, and outline an ecosystem for open and transparent science that has emerged within the human neuroimaging community.
Abstract: The reproducibility of scientific research has become a point of critical concern. We argue that openness and transparency are critical for reproducibility, and we outline an ecosystem for open and transparent science that has emerged within the human neuroimaging community. We discuss the range of open data sharing resources that have been developed for neuroimaging data, and the role of data standards (particularly the Brain Imaging Data Structure) in enabling the automated sharing, processing, and reuse of large neuroimaging datasets. We outline how the open-source Python language has provided the basis for a data science platform that enables reproducible data analysis and visualization. We also discuss how new advances in software engineering, such as containerization, provide the basis for greater reproducibility in data analysis. The emergence of this new ecosystem provides an example for many areas of science that are currently struggling with reproducibility.

Posted ContentDOI
18 Sep 2018-bioRxiv
TL;DR: The MRIQC WebAPI is presented, an open crowdsourced database that collects image quality metrics extracted from MR images and corresponding manual assessments by experts and is designed to allow the development of fully automated quality control tools that outperform expert ratings in identifying subpar images.
Abstract: The neuroimaging community is steering towards increasingly large sample sizes, which are highly heterogeneous because they can only be acquired by multi-site consortia. The visual assessment of every imaging scan is a necessary quality control step, yet arduous and time-consuming. A sizeable body of evidence shows that images of low quality are a source of variability that may be comparable to the effect size under study. We present the MRIQC WebAPI, an open crowdsourced database that collects image quality metrics extracted from MR images and corresponding manual assessments by experts. The database is rapidly growing, and currently contains over 100,000 records of image quality metrics of functional and anatomical MRIs of the human brain, and over 200 expert ratings. The resource is particularly designed for researchers to share image quality metrics and annotations that can readily be reused in training human experts and machine learning algorithms. The ultimate goal of the MRIQC WebAPI is to allow the development of fully automated quality control tools that outperform expert ratings in identifying subpar images.

Posted ContentDOI
21 Feb 2018-bioRxiv
TL;DR: Applying spacing strategies to training paradigms that target automatic processes could prove a useful tool for the long-term maintenance of health improvement goals with the development of real-world behavioral change paradigsms that incorporate distributed practice principles.
Abstract: The maintenance of behavioral change over the long term is essential to achieve public health goals such as combatting obesity and drug use. Previous work by our group has demonstrated a reliable shift in preferences for appetitive foods following a novel non-reinforced training paradigm. In the current studies, we tested whether distributing training trials over two consecutive days would affect preferences immediately after training as well as over time at a one-month follow-up. In four studies, three different designs and an additional pre-registered replication of one sample, we found that spacing of cue-approach training induced a shift in food choice preferences over one month. The spacing and massing schedule employed governed the long-term changes in choice behavior. Applying spacing strategies to training paradigms that target automatic processes could prove a useful tool for the long-term maintenance of health improvement goals with the development of real-world behavioral change paradigms that incorporate distributed practice principles.

Posted ContentDOI
27 Jun 2018-bioRxiv
TL;DR: The results indicate that single-session learning tasks engage partially distinct learning mechanisms from spaced sessions of training, which begin to address a large gap in knowledge of human learning from reinforcement, with potential implications for the understanding of mood disorders and addiction.
Abstract: Over the past few decades, neuroscience research has illuminated the neural mechanisms supporting learning from reward feedback. Learning paradigms are increasingly being extended to study mood and psychiatric disorders as well as addiction. However, one potentially critical characteristic that this research ignores is the effect of time on learning: human feedback learning paradigms are usually conducted in a single rapidly paced session, while learning experiences in ecologically relevant circumstances and in animal research are almost always separated by longer periods of time. In our experiments, we examined reward learning in short condensed sessions distributed across weeks vs. learning completed in a single "massed" session in male and female participants. As expected, we found that after equal amounts of training, accuracy was matched between the spaced and massed conditions. However, in a 3-week follow-up, we found that participants exhibited significantly greater memory for the value of spaced-trained stimuli. Supporting a role for short-term memory in massed learning, we found a significant positive correlation between initial learning and working memory capacity. Neurally, we found that patterns of activity in the medial temporal lobe and prefrontal cortex showed stronger discrimination of spaced- vs. massed-trained reward values. Further, patterns in the striatum discriminated between spaced- and massed-trained stimuli overall. Our results indicate that single-session learning tasks engage partially distinct learning mechanisms from spaced sessions of training. Our studies begin to address a large gap in our knowledge of human learning from reinforcement, with potential implications for our understanding of mood disorders and addiction.

Book ChapterDOI
16 Sep 2018
TL;DR: One iteration to improve the performance of MRIQC on this task is shown, by investigating two challenging problems: site-effects and noise in the labels assigned by human experts.
Abstract: MRIQC is a quality control tool that predicts the binary rating (accept/exclude) that human experts would assign to T1-weighted MR images of the human brain. For such prediction, a random forests classifier performs on a vector of image quality metrics (IQMs) extracted from each image. Although MRIQC achieved an out-of-sample accuracy of \(\sim \)76%, we concluded that this performance on new, unseen datasets would likely improve after addressing two problems. First, we found that IQMs show “site-effects” since they are highly correlated with the acquisition center and imaging parameters. Second, the high inter-rater variability suggests the presence of annotation errors in the labels of both training and test data sets. Annotation errors may be accentuated by some preprocessing decisions. Here, we confirm the “site-effects” in our IQMs using t-student Stochastic Neighbour Embedding (t-SNE). We also improve by a \(\sim \)10% accuracy increment on the out-of-sample prediction of MRIQC by revising a label binarization step in MRIQC. Reliable and automated QC of MRI is in high demand for the increasingly large samples currently being acquired. We show here one iteration to improve the performance of MRIQC on this task, by investigating two challenging problems: site-effects and noise in the labels assigned by human experts.

Journal ArticleDOI
TL;DR: In this paper, the authors show that their results do not suffer from "inflation in the FDR [false discovery rate]", as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88).
Abstract: Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88) presented a critique of our recently published paper in Cell Reports entitled 'Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets' (Lam et al., Cell Reports, Vol. 21, 2017, 2597-2613). Specifically, Hill offered several interrelated comments suggesting potential problems with our use of a new analytic method called Multi-Trait Analysis of GWAS (MTAG) (Turley et al., Nature Genetics, Vol. 50, 2018, 229-237). In this brief article, we respond to each of these concerns. Using empirical data, we conclude that our MTAG results do not suffer from 'inflation in the FDR [false discovery rate]', as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88), and are not 'more relevant to the genetic contributions to education than they are to the genetic contributions to intelligence'.

Proceedings ArticleDOI
01 Jan 2018
TL;DR: In this article, a data-driven framework is proposed to integrate multiple psychological literatures into a new cognitive ontology, and individual-differences across an unprecedented range of behavioral tasks, self-report surveys and real-world outcomes are examined.
Abstract: Despite a wealth of behavioral and neural findings, psychology and cognitive neuroscience lack integrative theories. One difficulty is the apparent multifuctional character of neural function (Anderson, 2016), a perspective ultimately founded on our neural and cognitive ontologies (Shine, Eisenberg, & Poldrack, 2016), and potentially ameliorated by their reconceptualization. While the progressive development of our neural ontology in terms of brain atlases and functional networks is the norm, commiserate refinement of a cognitive ontology has been lacking. We forward a data-driven framework to integrate multiple psychological literatures into a new cognitive ontology. We examine individual-differences across an unprecedented range of behavioral tasks, self-report surveys and real-world outcomes and use factor-analysis to reduce the dimensionality of these measurements, creating a ”cognitive space” to serve as a common coordinate system to describe many cognitive constructs. Within the cognitive space measurements are structured, which is revealed through clustering. This new representation of cognitive measures provides a hypothesis for neural organization, which we pursue in an fMRI experiment where we scan participants completing a subset of the behavioral measures.

Posted Content
TL;DR: In this article, the authors propose to mine brain medical publications to learn the spatial distribution associated with anatomical terms, which is formulated in terms of minimization of a risk on distributions which leads to a least-deviation cost function.
Abstract: Despite the digital nature of magnetic resonance imaging, the resulting observations are most frequently reported and stored in text documents. There is a trove of information untapped in medical health records, case reports, and medical publications. In this paper, we propose to mine brain medical publications to learn the spatial distribution associated with anatomical terms. The problem is formulated in terms of minimization of a risk on distributions which leads to a least-deviation cost function. An efficient algorithm in the dual then learns the mapping from documents to brain structures. Empirical results using coordinates extracted from the brain-imaging literature show that i) models must adapt to semantic variation in the terms used to describe a given anatomical structure, ii) voxel-wise parameterization leads to higher likelihood of locations reported in unseen documents, iii) least-deviation cost outperforms least-square. As a proof of concept for our method, we use our model of spatial distributions to predict the distribution of specific neurological conditions from text-only reports.

Journal Article
TL;DR: It is demonstrated that aggregating independent task-fMRI studies can provide a more precise global atlas of selective associations between brain and cognition, and it is shown that it can accurately decode the cognitive concepts recruited in new tasks.
Abstract: To map the neural substrate of mental function, cognitive neuroimaging relies on controlled psychological manipulations that engage brain systems associated with specific cognitive processes. In order to build comprehensive atlases of cognitive function in the brain, it must assemble maps for many different cognitive processes, which often evoke overlapping patterns of activation. Such data aggregation faces contrasting goals: on the one hand finding correspondences across vastly different cognitive experiments, while on the other hand precisely describing the function of any given brain region. Here we introduce a new analysis framework that tackles these difficulties and thereby enables the generation of brain atlases for cognitive function. The approach leverages ontologies of cognitive concepts and multi-label brain decoding to map the neural substrate of these concepts. We demonstrate the approach by building an atlas of functional brain organization based on 30 diverse functional neuroimaging studies, totaling 196 different experimental conditions. Unlike conventional brain mapping, this functional atlas supports robust reverse inference: predicting the mental processes from brain activity in the regions delineated by the atlas. To establish that this reverse inference is indeed governed by the corresponding concepts, and not idiosyncrasies of experimental designs, we show that it can accurately decode the cognitive concepts recruited in new tasks. These results demonstrate that aggregating independent task-fMRI studies can provide a more precise global atlas of selective associations between brain and cognition.