scispace - formally typeset
Search or ask a question
Institution

Cadence Design Systems

CompanySan Jose, California, United States
About: Cadence Design Systems is a company organization based out in San Jose, California, United States. It is known for research contribution in the topics: Circuit design & Routing (electronic design automation). The organization has 3139 authors who have published 3745 publications receiving 66410 citations. The organization is also known as: Cadence Design Systems, Inc.


Papers
More filters
Journal Article
TL;DR: It is proved that amost permissive finite-state observer can be computed in doubly exponential time, using a game-theoretic approach, and further investigate optimization problems for dynamic observers and define a notion of cost of an observer.
Abstract: We study sensor minimization problems in the context of fault diagnosis. Fault diagnosis consists in synthesizing a diagnoser that observes a given plant and identifies faults in the plant as soon as possible after their occurrence. Existing literature on this problem has considered the case of fixed static observers, where the set of observable events is fixed and does not change during execution of the system. In this paper, we consider static observers where the set of observable events is not fixed, but needs to be optimized (e.g., minimized in size). We also consider dynamic observers, where the observer can "switch" sensors on or off, thus dynamically changing the set of events it wishes to observe. It is known that checking diagnosability (i.e., whether a given observer is capable of identifying faults) can be solved in polynomial time for static observers, and we show that the same is true for dynamic ones. On the other hand, minimizing the number of (static) observable events required to achieve diagnosability is NP-complete. We show that this is true also in the case of mask-based observation, where some events are observable but not distinguishable. For dynamic observers' synthesis, we prove that amost permissive finite-state observer can be computed in doubly exponential time, using a game-theoretic approach. We further investigate optimization problems for dynamic observers and define a notion of cost of an observer. We show how to compute an optimal observer using results on mean-payoff games by Zwick and Paterson.

101 citations

Patent
17 Dec 2002
TL;DR: In this article, an electronic design is generated for an integrated circuit that is to be fabricated in accordance with the electronic design by a process that will impart topographically induced feature dimension variations to the integrated circuit.
Abstract: An electronic design is generated for an integrated circuit that is to be fabricated in accordance with the electronic design by a process that will impart topographically induced feature dimension variations to the integrated circuit. The generating includes adjusting the electronic design based on predictions of topographical and topographical-related feature dimension variations by a pattern-dependent model. An RC extraction tool is used in conjunction with the generating and adjusting of the electronic design. The process includes a fabrication process that will impart topographical variation to the integrated circuit and a lithography or etch process. Placement attributes for elements of the integrated circuit are determined.

100 citations

Patent
29 Jan 2008
TL;DR: In this paper, an approach for affording copy-back data integrity in non-volatile memory systems is presented. But it does not address the problem of data integrity when the data is moved to system memory and examined for errors.
Abstract: An invention is provided for affording CopyBack data integrity in a non-volatile memory system. When the potential for moving data with a CopyBack command occurs, a counter corresponding to the data is examined. When the counter is below a predetermined limit, the counter is incremented and data from the block of data is moved using a CopyBack command. However, when the counter reaches the predetermined limit, the counter is reset and data from the block of data is moved to system memory and examined for errors. Once any errors are corrected, the data is transferred back to the non-volatile memory.

100 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the droplet-based microelectrofluidic MEFS provides higher performance, as well as lower design and integration complexity than the continuous-flow systems.
Abstract: Composite microsystems that incorporate microelectromechanical and microelectrofluidic devices are emerging as the next generation of system-on-a-chip (SOC). We present a performance comparison between two types of microelectrofluidic systems (MEFS): continuous-flow systems and droplet-based systems. The comparison is based on a specific microelectrofluidic application-a polymerase chain reaction (PCR) system. The behavioral modeling, simulation, and performance evaluation are based on a SystemC design environment. The performance comparison includes the system throughput, system-correction capacity, system-processing capacity, and system-design complexity. By using our system-performance evaluation environment, we demonstrated that the droplet-based MEFS provides higher performance, as well as lower design and integration complexity.

100 citations

Proceedings ArticleDOI
13 Mar 2001
TL;DR: A technique based upon a statistical approach that improves existing estimation techniques is described that provides a degree of reliability in the error of the estimated execution time of embedded software.
Abstract: Estimates of execution time of embedded software play an important role in function-architecture co-design. This paper describes a technique based upon a statistical approach that improves existing estimation techniques. Our approach provides a degree of reliability in the error of the estimated execution time. We illustrate the technique using both control-oriented and computational-dominated benchmark programs.

99 citations


Authors

Showing all 3142 results

NameH-indexPapersCitations
Alberto Sangiovanni-Vincentelli9993445201
Derong Liu7760819399
Andrew B. Kahng7661824097
Jason Cong7659424773
Kenneth L. McMillan6015020835
Edoardo Charbon6052612293
Richard B. Fair5920514653
John P. Hayes5830211206
Sachin S. Sapatnekar5642412543
Wayne G. Paprosky5619610571
Robert G. Meyer4911613011
Scott M. Sporer491508085
Charles J. Alpert492248287
Joao Marques-Silva482899374
Paulo Flores483217617
Network Information
Related Institutions (5)
Intel
68.8K papers, 1.6M citations

90% related

Qualcomm
38.4K papers, 804.6K citations

87% related

Motorola
38.2K papers, 968.7K citations

84% related

Samsung
163.6K papers, 2M citations

83% related

Hewlett-Packard
59.8K papers, 1.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20223
2021103
2020185
2019212
2018103
201788