scispace - formally typeset
Search or ask a question
Institution

Fundación Instituto Leloir

FacilityBuenos Aires, Argentina
About: Fundación Instituto Leloir is a facility organization based out in Buenos Aires, Argentina. It is known for research contribution in the topics: Dentate gyrus & Neurogenesis. The organization has 702 authors who have published 1052 publications receiving 39299 citations.
Topics: Dentate gyrus, Neurogenesis, RNA, Arabidopsis, Gene


Papers
More filters
Journal ArticleDOI
15 Nov 2005-Proteins
TL;DR: The structures of the T. cruzi FPPS reveal that after binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge‐like closure of the binding site, which may lead to the design of new, more potent anti‐trypanosomal bisphosphonates.
Abstract: Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C5 alcohols (isopentenyl and dimethylallyl) to form C10 and C15 diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.

128 citations

Journal ArticleDOI
TL;DR: This study compares mature neurons born in the embryonic and adult hippocampus, with a focus on intrinsic membrane properties and γ‐aminobutyric acid (GABA)ergic synaptic inputs, and demonstrates that granule cells of different age, location and degree of excitability receive GABAergic inputs of equivalent functional characteristics.
Abstract: Neurogenesis in the dentate gyrus of the hippocampus follows a unique temporal pattern that begins during embryonic development, peaks during the early postnatal stages and persists through adult life. We have recently shown that dentate granule cells born in early postnatal and adult mice acquire a remarkably similar afferent connectivity and firing behavior, suggesting that they constitute a homogeneous functional population [Laplagne et al. (2006)PLoS Biol., 4, e409]. Here we extend our previous study by comparing mature neurons born in the embryonic and adult hippocampus, with a focus on intrinsic membrane properties and gamma-aminobutyric acid (GABA)ergic synaptic inputs. For this purpose, dividing neuroblasts of the ventricular wall were retrovirally labeled with green fluorescent protein at embryonic day 15 (E15), and progenitor cells of the subgranular zone were labeled with red fluorescent protein in the same mice at postnatal day 42 (P42, adulthood). Electrophysiological properties of mature neurons born at either stage were then compared in the same brain slices. Evoked and spontaneous GABAergic postsynaptic responses of perisomatic and dendritic origin displayed similar characteristics in both neuronal populations. Miniature GABAergic inputs also showed similar functional properties and pharmacological profile. A comparative analysis of the present data with our previous observations rendered no significant differences among GABAergic inputs recorded from neurons born in the embryonic, early postnatal and adult mice. Yet, embryo-born neurons showed a reduced membrane excitability, suggesting a lower engagement in network activity. Our results demonstrate that granule cells of different age, location and degree of excitability receive GABAergic inputs of equivalent functional characteristics.

127 citations

Journal ArticleDOI
TL;DR: The results reinforce the relevance of functional IDE in the catabolism of extracellular Abeta by demonstrating that proteolytically-active plasma membrane associated-IDE is routed in living N2a cells to multivesicular bodies and subsequently, a major fraction is sorted to exosomes.
Abstract: The accumulation of Aβ peptides in the senile plaques is one of the hallmarks of Alzheimer disease (AD) progression. The endocytic pathway has been proposed as a major subcellular site for Aβ generation while the compartments in which Aβ-degrading proteases interact with Aβ are still elusive. It was suggested that extracellular Aβ degradation may take place by plasma-membrane associated proteases or by extracellular proteases, among which insulin-degrading enzyme (IDE) is the most relevant. However, the mechanisms of IDE secretion are poorly understood. In the present study we used N2a cells to explore if IDE is indeed released through exosomes and the effect of exosomes release on extracellular levels of Aβ. We demonstrated that proteolitically active plasma membrane associated-IDE is routed in living N2a cells to multivesicular bodies and subsequently, a major fraction is sorted to exosomes. We described that extracellular IDE levels decrease if the MVBs generation is interfered and may be positively modulated by exosomes release under stress-induced conditions. Our results reinforce the relevance of functional IDE in the catabolism of extracellular Aβ.

125 citations

Journal ArticleDOI
TL;DR: This review focuses on the contribution of adult‐born neurons to activity‐dependent synaptic modification in the dentate gyrus and, in turn, discusses how network activity modulates integration and survival of new neurons.
Abstract: The granule cell layer (GCL) of the dentate gyrus contains neurons generated during embryonic, early postnatal and adult life. During adulthood there is a continuous production of neuronal cohorts that develop and functionally integrate in the preexisting circuits. This morphogenic process generates a stratified GCL, with the outermost layers containing dentate granule cells (DGCs) generated during perinatal life, and the innermost layers containing adult-born DGCs. In this review we analyse the functional profile of the different neuronal populations of the GCL, with an emphasis on adult-born neurons as they develop, mature and integrate in the dentate gyrus network. We focus on the contribution of adult-born neurons to activity-dependent synaptic modification in the dentate gyrus and, in turn, discuss how network activity modulates integration and survival of new neurons.

120 citations

Journal ArticleDOI
TL;DR: It is demonstrated that prenatal inflammation triggered by LPS impairs adult neurogenesis and recognition memory and provided a model of reduced adult Neurogenesis with long-lasting defined alterations in the neurogenic niche and it is shown that the expression of a single cytokine (TGFβ(1)) in the hippocampus can restore adult neuroGenesis and its related behavior.
Abstract: Prenatal exposure to inflammatory stimuli is known to influence adult brain function. In addition, adult hippocampal neurogenesis is impaired by a local pro-inflammatory microenvironment. On this basis, we hypothesized that a pro-inflammatory insult during gestation would have negative effects on adult neurogenesis in the offspring. Pregnant Wistar rats received subcutaneous injections of lipopolysaccharide (LPS; 0.5mg/kg) or saline every other day from gestational day 14 to 20. The adult offspring prenatally treated with LPS showed a decrease in the proliferating cells and the newborn neurons of the dentate gyrus. Furthermore, prenatal LPS treatment impaired performance in the neurogenesis-dependent novel object recognition test. Maternal care was impaired by prenatal LPS administration but did not contribute to the effects of prenatal LPS on adult neurogenesis. Persistent microglial activation and downregulated expression of transforming growth factor beta-1 (TGFβ(1)) occurred specifically in the adult hippocampus of animals treated prenatally with LPS. Importantly, chronic hippocampal TGFβ(1) overexpression restored neurogenesis as well as recognition memory performance to control levels. These findings demonstrate that prenatal inflammation triggered by LPS impairs adult neurogenesis and recognition memory. Furthermore, we provide a model of reduced adult neurogenesis with long-lasting defined alterations in the neurogenic niche. Finally, we show that the expression of a single cytokine (TGFβ(1)) in the hippocampus can restore adult neurogenesis and its related behavior, highlighting the role of TGFβ(1) in these processes.

119 citations


Authors

Showing all 707 results

Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

91% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

91% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

91% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

91% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202210
2021107
202099
201986
201865
201781