scispace - formally typeset
Search or ask a question
Institution

Fundación Instituto Leloir

FacilityBuenos Aires, Argentina
About: Fundación Instituto Leloir is a facility organization based out in Buenos Aires, Argentina. It is known for research contribution in the topics: Dentate gyrus & Neurogenesis. The organization has 702 authors who have published 1052 publications receiving 39299 citations.
Topics: Dentate gyrus, Neurogenesis, RNA, Arabidopsis, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that M6 is key in cell remodeling processes underlying visual system function, and brought further insight into the role of M6/M6a in biological processes involving neuronal plasticity and behavior in flies and mammals.
Abstract: Background: Members of the proteolipid protein family, including the four-transmembrane glycoprotein M6a, are involved in neuronal plasticity in mammals. Results from our group previously demonstrated that M6, the only proteolipid protein expressed in Drosophila, localizes to the cell membrane in follicle cells. M6 loss triggers female sterility, which suggests a role for M6 in follicular cell remodeling. These results were the basis of the present study, which focused on the function and requirements of M6 in the fly nervous system. Results: The present study identified two novel, tissue-regulated M6 isoforms with variable N- and C- termini, and showed that M6 is the functional fly ortholog of Gpm6a. In the adult brain, the protein was localized to several neuropils, such as the optic lobe, the central complex, and the mushroom bodies. Interestingly, although reduced M6 levels triggered a mild rough-eye phenotype, hypomorphic M6 mutants exhibited a defective response to light. Conclusions: Based on its ability to induce filopodium formation we propose that M6 is key in cell remodeling processes underlying visual system function. These results bring further insight into the role of M6/M6a in biological processes involving neuronal plasticity and behavior in flies and mammals.

9 citations

Journal ArticleDOI
TL;DR: Evidence that glycolysis governs oxidative stress on monocytes and modulates monocyte-T cell interplay in human chronic Chagas disease is clearly evidence.
Abstract: Chagas disease is a lifelong pathology resulting from Trypanosoma cruzi infection. It represents one of the most frequent causes of heart failure and sudden death in Latin America. Herein, we provide evidence that aerobic glycolytic pathway activation in monocytes drives nitric oxide (NO) production, triggering tyrosine nitration (TN) on CD8+ T cells and dysfunction in patients with chronic Chagas disease. Monocytes from patients exhibited a higher frequency of hypoxia-inducible factor 1α and increased expression of its target genes/proteins. Nonclassical monocytes are expanded in patients' peripheral blood and represent an important source of NO. Monocytes entail CD8+ T cell surface nitration because both the frequency of nonclassical monocytes and that of NO-producing monocytes positively correlated with the percentage of TN+ lymphocytes. Inhibition of glycolysis in in vitro-infected peripheral blood mononuclear cells decreased the inflammatory properties of monocytes/macrophages, diminishing the frequency of IL-1β- and NO-producing cells. In agreement, glycolysis inhibition reduced the percentage of TN+CD8+ T cells, improving their functionality. Altogether, these results clearly show that glycolysis governs oxidative stress on monocytes and modulates monocyte-T cell interplay in human chronic Chagas disease. Understanding the pathological immune mechanisms that sustain an inflammatory environment in human pathology is key to designing improved therapies.

9 citations

Journal ArticleDOI
TL;DR: This study investigated the structural and biophysical characteristics of GumB and GumC, two Xanthomonas campestris membrane proteins that are involved in xanthan biosynthesis and suggested that recombinant GumB is a tetrameric protein in solution.

9 citations

Journal ArticleDOI
01 Oct 2017-Genetics
TL;DR: It is shown that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock and highlights the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model.
Abstract: Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day-night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in period (per) levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced per construct, but not by an extra copy of the endogenous locus, showing that SRm160 positively regulates per levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model.

9 citations

Journal ArticleDOI
26 Aug 2020
TL;DR: It is observed that H-NS plays a role in alleviating the stress triggered by MBL toxic precursors and counteracts the effect of DNA-damaging agents, supporting its role in stress response.
Abstract: Disruption of the histone-like nucleoid structuring protein (H-NS) was shown to affect the ability of Gram-negative bacteria to regulate genes associated with virulence, persistence, stress response, quorum sensing, biosynthesis pathways, and cell adhesion. Here, we used the expression of metallo-β-lactamases (MBLs), known to elicit envelope stress by the accumulation of toxic precursors in the periplasm, to interrogate the role of H-NS in Acinetobacter baumannii, together with other stressors. Using a multidrug-resistant A. baumannii strain, we observed that H-NS plays a role in alleviating the stress triggered by MBL toxic precursors and counteracts the effect of DNA-damaging agents, supporting its role in stress response.IMPORTANCE Carbapenem-resistant A. baumannii (CRAB) is recognized as one of the most threatening Gram-negative bacilli. H-NS is known to play a role in controlling the transcription of a variety of different genes, including those associated with the stress response, persistence, and virulence. In the present work, we uncovered a link between the role of H-NS in the A. baumannii stress response and its relationship with the envelope stress response and resistance to DNA-damaging agents. Overall, we posit a new role of H-NS, showing that H-NS serves to endure envelope stress and could also be a mechanism that alleviates the stress induced by MBL expression in A. baumannii This could be an evolutionary advantage to further resist the action of carbapenems.

9 citations


Authors

Showing all 707 results

Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

91% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

91% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

91% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

91% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202210
2021107
202099
201986
201865
201781