scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Proceedings ArticleDOI
01 Jan 1992
TL;DR: The new method is the culmination of many years of experience in developing a practical implementation of the Eigensystem Realization Algorithm and illustrated using data from NASA Langley's Controls-Structures-Interaction Evolutionary Model.
Abstract: A new method is described for assessing the consistency of structural modal parameters identified with the Eigensystem Realization Algorithm. Identification results show varying consistency in practice due to many sources including high modal density, nonlinearity, and inadequate excitation. Consistency is considered to be a reliable indicator of accuracy. The new method is the culmination of many years of experience in developing a practical implementation of the Eigensystem Realization Algorithm. The effectiveness of the method is illustrated using data from NASA Langley's Controls-Structures-Interaction Evolutionary Model.

160 citations

Journal ArticleDOI
TL;DR: In this paper, the primary payload onboard the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite is a dual-wavelength backscatter lidar designed to provide vertical profiling of clouds and aerosols.
Abstract: The primary payload onboard the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite is a dual-wavelength backscatter lidar designed to provide vertical profiling of clouds and aerosols. Launched in April 2006, the first data from this new satellite was obtained in June 2006. As with any new satellite measurement capability, an immediate post-launch requirement is to verify that the data being acquired is correct lest scientific conclusions begin to be drawn based on flawed data. A standard approach to verifying satellite data is to take a similar, or validation, instrument and fly it onboard a research aircraft. Using an aircraft allows the validation instrument to get directly under the satellite so that both the satellite instrument and the aircraft instrument are sensing the same region of the atmosphere. Although there are almost always some differences in the sampling capabilities of the two instruments, it is nevertheless possible to directly compare the measurements. To validate the measurements from the CALIPSO lidar, a similar instrument, the Cloud Physics Lidar, was flown onboard the NASA high-altitude ER-2 aircraft during July- August 2006. This paper presents results to demonstrate that the CALIPSO lidar is properly calibrated and the CALIPSO Level 1 data products are correct. The importance of the results is to demonstrate to the research community that CALIPSO Level 1 data can be confidently used for scientific research.

160 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the peak shock noise from unheated convergent nozzles and found that the relative importance of shock noise with respect to jet-mixing noise is maximum near the pressure ratio at which a Mach disk begins to form in the jet.
Abstract: Broadband shock noise from supersonic jets is investigated through acoustic measurements in both the near and far fields. The peak Helmholtz number of broadband shock noise from unheated convergent nozzles is found to be independent of nozzle pressure ratio when based on the length of the shock cells and the ambient speed of sound. Excellent agreement between power spectral densities measured at various far-field angles is obtained at and above the peak shock noise frequency when source convection and directivity effects are included. The directivity of broadband shock noise is found to be pointed in the upstream direction, with omnidirectionality being approached only at high pressure ratios. For both convergent and convergent-divergent nozzles, the relative importance of shock noise with respect to jet-mixing noise is found to be maximum near the pressure ratio at which a Mach disk begins to form in the jet. Near-field measurements point to a limited portion of the shock cell system as the region of dominant broadband noise emission from a highly underexpanded convergent nozzle.

159 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of physical aging on the long-term viscoelastic behavior of polymeric composites are investigated and the effect of aging into equilibrium and a relationship to the time-temperature shift factor is investigated.

159 citations

Journal ArticleDOI
TL;DR: In this paper, a radiative transfer model of the troposphere and stratosphere is presented which includes both long-wave cooling and solar heating due to H2O, CO2 and O3.
Abstract: A radiative transfer model of the troposphere and stratosphere is presented which includes both long-wave cooling and solar heating due to H2O, CO2 and O3 and has a simplified formulation which facilitates the inclusion of Doppler broadening, H2O continuum bands, hot and minor isotopic bands of CO2, and overlap of H2O bands with CO2 and O3 bands. The radiative model is used to develop an accurate radiative-convective model for studying the global surface temperature, stratospheric thermal structure and the net outgoing long-wave flux.

159 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797