scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: The Dust Outflow and Deposition to the Ocean project (DODO) aimed to characterize the physical and optical properties of airborne North African dust in two seasons and to use these observations to constrainmodelsimulations, with the ultimate aim of being abletoquantify the position of iron to the North Atlantic Ocean as discussed by the authors.
Abstract: [1] NorthAfricandustisimportantforclimatethroughitsdirectradiativeeffectonsolarand terrestrial radiation and its role in the biogeochemical system. The Dust Outflow and Deposition to the Ocean project (DODO) aimed to characterize the physical and optical properties of airborne North African dust in two seasons and to use these observations to constrainmodelsimulations,withtheultimateaimofbeingabletoquantifythedepositionof iron to the North Atlantic Ocean. The in situ properties of dust from airborne campaigns measured during February and August 2006, based at Dakar, Senegal, are presented here. Average values of the single scattering albedo (0.99, 0.98), mass specific extinction (0.85 m 2 g � 1 ,1 .14 m 2 g � 1 ), asymmetry parameter (0.68, 0.68), and refractive index (1.53–0.0005i, 1.53–0.0014i) for the accumulation mode were found to differ by varying degrees between the dry and wet season, respectively. It is hypothesized that these differences are due to different source regions and transport processes which also differ between the DODO campaigns. Elemental ratios of Ca/Al were found to differ between the dry and wet season (1.1 and 0.5, respectively). Differences in vertical profiles are found between seasons and between land and ocean locations and reflect the different dynamics of the seasons. Using measurements of the coarse mode size distribution and illustrative Mie calculations, the optical properties are found to be very sensitive to the presence and amount of coarse mode of mineral dust, and the importance of accurate measurements of the coarse mode of dust is highlighted.

169 citations

Journal ArticleDOI
TL;DR: In this article, boundary-layer separation control on a twodimensional single-flap, three-element, high-lift system at near-flight Reynolds numbers with small surfacemounted vortex generators is evaluated.
Abstract: An experimental investigation has been conducted to evaluate boundary-layer separation control on a twodimensional single-flap, three-element, high-lift system at near-flight Reynolds numbers with small surfacemounted vortex generators. The wind-tunnel testing was carried out in the NASA Langley Low-Turbulence Pressure Tunnel as part of a cooperative program between McDonnell Douglas Aerospace and NASA Langley Research Center to develop code validation data bases and to improve physical understanding of multielement airfoil flows. This article describes results obtained for small (subboundary-layer) vane-type vortex generators mounted on a multielement airfoil in a landing configuration. Measurements include lift, drag, surface pressure, wake profile, and fluctuating surface heat fluxes. The results reveal that vortex generators as small as 0.18% of reference (slat and flap stowed) wing chord ("micro-vortex generators") can effectively reduce boundarylayer separation on the flap for landing configurations. Reduction of flap separation can significantly improve performance of the high-lift system by reducing drag and increasing lift for a given approach angle of attack. At their optimum chordwise placement on the flap, the micro-vortex generators are hidden inside the wing when the flap is retracted, thus extracting no cruise drag penalty.

169 citations

Journal ArticleDOI
TL;DR: In this article, a transonic small perturbation potential equation was used to determine transonic flutter boundaries versus Mach number and angle of attack for NACA 64A010 and MBB A-3 airfoils.
Abstract: Transonic aeroelastic solutions based upon the transonic small perturbation potential equation were studied. Time-marching transient solutions of plunging and pitching airfoils were analyzed using a complex exponential modal identification technique, and seven alternative integration techniques for the structural equations were evaluated. The HYTRAN2 code was used to determine transonic flutter boundaries versus Mach number and angle-of-attack for NACA 64A010 and MBB A-3 airfoils. In the code, a monotone differencing method, which eliminates leading edge expansion shocks, is used to solve the potential equation. When the effect of static pitching moment upon the angle-of-attack is included, the MBB A-3 airfoil can have multiple flutter speeds at a given Mach number.

169 citations

Journal ArticleDOI
TL;DR: In this paper, a geostationary satellite data to document the conversion of the contrails to cirrus clouds was analyzed with geospatial satellite data and two unique contrails, a pair of figure eights and a NASA DC-8 oval, were tracked for more than 7 hours.
Abstract: Three contrail systems were analyzed with geostationary satellite data to document the conversion of the contrails to cirrus clouds. Two unique contrails, a pair of figure eights and a NASA DC-8 oval, were tracked for more than 7 hours. A cluster of contrails from commercial aircraft lasted over 17 hours. The figure eights produced a cirrus cloud having a maximum extent of 12,000 km²; the commercial cluster reached an area of ∼35,000 km². The contrail-cirrus were thin with optical depths between 0.2 and 0.5. In all cases, cloud particle size increased as the contrails developed into cirrus clouds. The climatic impact of contrails will be greater than would be estimated if only linear contrails, those typically observed in satellite imagery, are considered. Additional research is required to obtain reliable statistics on contrail growth and lifetime.

169 citations

Journal ArticleDOI
TL;DR: This paper used CO2:CO correlations in Asian outflow from the TRACE-P aircraft campaign (February-April 2001), together with a three-dimensional global chemical transport model (GEOS-CHEM), to constrain specific components of the east Asian CO2 budget including, in particular, Chinese emissions.
Abstract: [1] We use observed CO2:CO correlations in Asian outflow from the TRACE-P aircraft campaign (February–April 2001), together with a three-dimensional global chemical transport model (GEOS-CHEM), to constrain specific components of the east Asian CO2 budget including, in particular, Chinese emissions. The CO2/CO emission ratio varies with the source of CO2 (different combustion types versus the terrestrial biosphere) and provides a characteristic signature of source regions and source type. Observed CO2/CO correlation slopes in east Asian boundary layer outflow display distinct regional signatures ranging from 10–20 mol/mol (outflow from northeast China) to 80 mol/mol (over Japan). Model simulations using best a priori estimates of regional CO2 and CO sources from Streets et al. [2003] (anthropogenic), the CASA model (biospheric), and Duncan et al. [2003] (biomass burning) overestimate CO2 concentrations and CO2/CO slopes in the boundary layer outflow. Constraints from the CO2/CO slopes indicate that this must arise from an overestimate of the modeled regional net biospheric CO2 flux. Our corrected best estimate of the net biospheric source of CO2 from China for March–April 2001 is 3200 Gg C/d, which represents a 45% reduction of the net flux from the CASA model. Previous analyses of the TRACE-P data had found that anthropogenic Chinese CO emissions must be ∼50% higher than in Streets et al.'s [2003] inventory. We find that such an adjustment improves the simulation of the CO2/CO slopes and that it likely represents both an underreporting of sector activity (domestic and industrial combustion) and an underestimate of CO emission factors. Increases in sector activity would imply increases in Chinese anthropogenic CO2 emissions and would also imply a further reduction of the Chinese biospheric CO2 source to reconcile simulated and observed CO2 concentrations.

169 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797