scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: This work examines a representative class of MDO problem formulations known as collaborative optimization, and discusses an alternative problem formulation, distributed analysis optimization, that yields a more tractable computational optimization problem.
Abstract: Analytical features of multidisciplinary optimization (MDO) problem formulations have significant practical consequences for the ability of nonlinear programming algorithms to solve the resulting computational optimization problems reliably and efficiently. We explore this important but frequently overlooked fact using the notion of disciplinary autonomy. Disciplinary autonomy is a desirable goal in formulating and solving MDO problems; however, the resulting system optimization problems are frequently difficult to solve. We illustrate the implications of MDO problem formulation for the tractability of the resulting design optimization problem by examining a representative class of MDO problem formulations known as collaborative optimization. We also discuss an alternative problem formulation, distributed analysis optimization, that yields a more tractable computational optimization problem.

220 citations

Journal ArticleDOI
TL;DR: In this article, the potential sources and sinks of formic, acetic, and pyruvic acids over the Amazon forest were investigated using a photochemical model and data collected on gas phase concentrations of these acids in the forest canopy, boundary layer, and free troposphere over the central Amazon Basin during the 1987 wet season.
Abstract: Potential sources and sinks of formic, acetic, and pyruvic acids over the Amazon forest were investigated using a photochemical model and data collected on gas phase concentrations of these acids in the forest canopy, boundary layer, and free troposphere over the central Amazon Basin during the 1987 wet season. It was found that the atmospheric reactions previously suggested in the literature as sources of carboxylic acids (i.e., the gas phase decomposition of isoprene, the reaction between CH3CO3 and a peroxide, and aqueous phase oxidation of CH2O) appear to be too slow to explain the observed concentrations, suggesting that other atmospheric reactions, so far unidentified, could make a major contribution to the carboxylic acid budgets.

220 citations

Journal ArticleDOI
TL;DR: In this paper, a method for real-time estimation of parameters in a linear dynamic state space model was developed and studied for aircraft dynamic model parameter estimation from measured data in flight for indirect adaptive or reconfigurable control.
Abstract: A method for real-time estimation of parameters in a linear dynamic state space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight for indirect adaptive or reconfigurable control. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle HARV) were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than 1 cycle of the dominant dynamic mode natural frequencies, using control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements, and could be implemented aboard an aircraft in real time.

220 citations

Journal ArticleDOI
TL;DR: The ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo-Wigner-Ville distribution) was demonstrated and theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.
Abstract: Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A0, A1, S0, and S2 Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along, and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.

220 citations

Journal ArticleDOI
TL;DR: In this paper, the Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual and zonal-mean vertical temperature response within a transient 1% yr−1 CO2 increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions.
Abstract: Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr−1 CO2 increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO2 doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respe...

220 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797