scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a daily bottom-up fire emission inventory for the summer of 2004 was constructed by combining daily area burned reports and MODIS fire hot spots with estimates of fuel consumption and emission factors based on ecosystem type.
Abstract: The summer of 2004 was one of the largest fire seasons on record for Alaska and western Canada. We construct a daily bottom-up fire emission inventory for that season, including consideration of peat burning and high-altitude (buoyant) injection, and evaluate it in a global chemical transport model (the GEOS-Chem CTM) simulation of CO through comparison with MOPITT satellite and ICARTT aircraft observations. The inventory is constructed by combining daily area burned reports and MODIS fire hot spots with estimates of fuel consumption and emission factors based on ecosystem type. We estimate the contribution from peat burning using drainage and peat distribution maps for Alaska and Canada; 17% of the reported 5.1 × 106 ha burned were located in peatlands in 2004. Our total estimate of North American fire emissions during the summer of 2004 is 30 Tg CO, including 11 Tg from peat. Including peat burning in the GEOS-Chem simulation improves agreement with MOPITT observations. The long-range transport of fire plumes observed by MOPITT suggests that the largest fires injected a significant fraction of their emissions in the upper troposphere.

196 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of polarizability, fluorine content, and free volume on dielectric constant was examined for several series of aromatic polyimides, and the results showed that minimizing polarization, maximizing free volume, and fluorination all lowered the polyimide dielectrics.

195 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of the CALIOPLidar with Orthogonal Polarization (CALIOP) instrument on the CALIPSO satellite is compared with the results from the NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft.
Abstract: . Aerosol classification products from the NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft are compared with coincident V3.01 aerosol classification products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the CALIPSO satellite. For CALIOP, aerosol classification is a key input to the aerosol retrieval, and must be inferred using aerosol loading-dependent observations and location information. In contrast, HSRL-1 makes direct measurements of aerosol intensive properties, including the lidar ratio, that provide information on aerosol type. In this study, comparisons are made for 109 underflights of the CALIOP orbit track. We find that 62% of the CALIOP marine layers and 54% of the polluted continental layers agree with HSRL-1 classification results. In addition, 80% of the CALIOP desert dust layers are classified as either dust or dusty mix byHSRL-1. However, agreement is less for CALIOP smoke (13%) and polluted dust (35%) layers. Specific case studies are examined, giving insight into the performance of the CALIOP aerosol type algorithm. In particular, we find that the CALIOP polluted dust type is overused due to an attenuation-related depolarization bias. Furthermore, the polluted dust type frequently includes mixtures of dust plus marine aerosol. Finally, we find that CALIOP's identification of internal boundaries between different aerosol types in contact with each other frequently do not reflect the actual transitions between aerosol types accurately. Based on these findings, we give recommendations which may help to improve the CALIOP aerosol type algorithms.

195 citations

Journal ArticleDOI
TL;DR: In this paper, seasonal depictions of the tropospheric ozone residual (TOR) were derived on a daily basis over a time period spanning more than two decades using coincident observations of total ozone from the Total Ozone Mapping Spectrometer (TOMS) and Stratospheric Aerosol and Gas Experiment (SAGE) ozone profiles.
Abstract: . Using coincident observations of total ozone from the Total Ozone Mapping Spectrometer (TOMS) and stratospheric ozone profiles from the Solar Backscattered Ultraviolet (SBUV) instruments, detailed maps of tropospheric ozone have been derived on a daily basis over a time period spanning more than two decades. The resultant climatological seasonal depictions of the tropospheric ozone residual (TOR) show much more detail than an earlier analysis that had used coincident TOMS and Stratospheric Aerosol and Gas Experiment (SAGE) ozone profiles, although there are many similarities between the TOMS/SAGE TOR and the TOMS/SBUV TOR climatologies. In particular, both TOR seasonal depictions show large enhancements in the southern tropics and subtropics in austral spring and at northern temperate latitudes during the summer. The much greater detail in this new data set clearly defines the regional aspect of tropospheric ozone pollution in northeastern India, eastern United States, eastern China, and west and southern Africa. Being able to define monthly climatologies for each year of the data record provides enough temporal resolution to illustrate significant interannual variability in some of these regions.

195 citations

Journal ArticleDOI
TL;DR: A general theoretical analysis of the errors that result from differences between the assumed and actual extinction/backscattering ratio profiles is presented.
Abstract: The Bernoulli solution of the lidar equation with the assumption of a constant extinction/backscattering ratio can lead to errors in the derived aerosol extinction and backscattering profiles. This paper presents a general theoretical analysis of the errors that result from differences between the assumed and actual extinction/backscattering ratio profiles. Examples of the influence of the constant extinction/backscattering ratio assumption on the lidar derived aerosol extinction profile are presented for various laser wavelengths.

194 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797