scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a model study of carbon monoxide for 1988-1997 using the GEOS-Chem 3-D model driven by assimilated meteorological data, with time-varying emissions from biomass burning and from fossil fuel and industry, overhead ozone columns, and methane.
Abstract: [1] We present a model study of carbon monoxide for 1988–1997 using the GEOS-Chem 3-D model driven by assimilated meteorological data, with time-varying emissions from biomass burning and from fossil fuel and industry, overhead ozone columns, and methane. The hydroxyl radical is calculated interactively using a chemical parameterization to capture chemical feedbacks. We document the inventory for fossil fuels/industry and discuss major uncertainties and the causes of differences with other inventories that give significantly lower emissions. We find that emissions hardly change from 1988 to 1997, as increases in Asia are offset by decreases elsewhere. The model reproduces the 20% decrease in CO at high northern latitudes and the 10% decrease in the North Pacific, caused primarily by the decrease in European emissions. The model compares well with observations at sites impacted by fossil fuel emissions from North America, Europe, and east Asia suggesting that the emissions from this source are reliable to 25%, and we argue that bottom-up emission estimates are likely to be too low rather than too high. The model is too low at the seasonal maximum in spring in the southern tropics, except for locations in the Atlantic Ocean. This problem may be caused by an overestimate of the frequency of tropical deep convection, a common problem in models that use assimilated meteorological data. We argue that the yield of CO from methane oxidation is near unity, contrary to some other studies, based on removal rates of intermediate species.

297 citations

Journal ArticleDOI
TL;DR: A change point approach based on the segmented regression technique for testing the constancy of the regression parameters in a linear profile data set using a data set from a calibration application at the National Aeronautics and Space Administration (NASA) Langley Research Center.
Abstract: We propose a change point approach based on the segmented regression technique for testing the constancy of the regression parameters in a linear profile data set. Each sample collected over time in the historical data set consists of several bivariate observations for which a simple linear regression model is appropriate. The change point approach is based on the likelihood ratio test for a change in one or more regression parameters. We compare the performance of this method to that of the most effective Phase I linear profile control chart approaches using a simulation study. The advantages of the change point method over the existing methods are greatly improved detection of sustained step changes in the process parameters and improved diagnostic tools to determine the sources of profile variation and the location(s) of the change point(s). Also, we give an approximation for appropriate thresholds for the test statistic. The use of the change point method is demonstrated using a data set from a calibration application at the National Aeronautics and Space Administration (NASA) Langley Research Center. Copyright © 2006 John Wiley & Sons, Ltd.

297 citations

Journal ArticleDOI
TL;DR: The current Earth's energy imbalance (EEI) is mostly caused by human activity and is driving global warming as mentioned in this paper, and the absolute value of EEI represents the most fundamental metric defining the status of global climate change, and will be more useful than using global surface temperature.
Abstract: The current Earth's energy imbalance (EEI) is mostly caused by human activity, and is driving global warming. The absolute value of EEI represents the most fundamental metric defining the status of global climate change, and will be more useful than using global surface temperature. EEI can best be estimated from changes in ocean heat content, complemented by radiation measurements from space. Sustained observations from the Argo array of autonomous profiling floats and further development of the ocean observing system to sample the deep ocean, marginal seas and sea ice regions are crucial to refining future estimates of EEI. Combining multiple measurements in an optimal way holds considerable promise for estimating EEI and thus assessing the status of global climate change, improving climate syntheses and models, and testing the effectiveness of mitigation actions. Progress can be achieved with a concerted international effort.

295 citations

Journal ArticleDOI
TL;DR: These formulas incorporate random testing results, information about the input distribution; and prior assumptions about the probability of failure of the software and include Bayesian prior assumptions.
Abstract: Formulas for estimating the probability of failure when testing reveals no errors are introduced. These formulas incorporate random testing results, information about the input distribution; and prior assumptions about the probability of failure of the software. The formulas are not restricted to equally likely input distributions, and the probability of failure estimate can be adjusted when assumptions about the input distribution change. The formulas are based on a discrete sample space statistical model of software and include Bayesian prior assumptions. Reusable software and software in life-critical applications are particularly appropriate candidates for this type of analysis. >

294 citations

Journal ArticleDOI
TL;DR: An unstiffened panel buckling constraint for balanced, symmetric laminated composites is included on the global design level in a mathematical programming structural optimization procedure for designing wing structures.
Abstract: An unstiffened panel buckling constraint for balanced, symmetric laminated composites is included on the global design level in a mathematical programming structural optimization procedure for designing wing structures. Constraints are introduced by penalty functions, and Newton's method based on approximate second derivatives of the penalty terms is used as the search algorithm to obtain minimum-mass designs. Constraint approximations used during the optimization process contribute to the computational efficiency of the procedure. A criterion is developed that identifies the appropriate conservative form of the constraint approximations that are used with the optimization procedure. Minimum-mass design results are obtained for a multispar high-aspect-ratio wing subjected to material strength, minimum-gage, displacement, panel buckling and twist constraints. The material systems considered for the examples are all graphite-epoxy, graphite-epoxy with boron-epoxy spar caps, and all aluminum. The composite material designs are shown to have an advantage over the aluminum designs since they can often satisfy additional constraints with only small mass increases.

294 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797