scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that reliable integration is most efficiently provided by fourth-order Runge–Kutta methods for this problem where order reduction is not observed.

193 citations

Journal ArticleDOI
TL;DR: The dispersion and loss in microstructured fibers are studied using a full-vectorial compact-2D finite-difference method in frequency-domain and a dielectric constant averaging technique using Ampere's law across the curved media interface is presented.
Abstract: The dispersion and loss in microstructured fibers are studied using a full-vectorial compact-2D finite-difference method in frequency-domain. This method solves a standard eigen-value problem from the Maxwell’s equations directly and obtains complex propagation constants of the modes using anisotropic perfectly matched layers. A dielectric constant averaging technique using Ampere’s law across the curved media interface is presented. Both the real and the imaginary parts of the complex propagation constant can be obtained with a high accuracy and fast convergence. Material loss, dispersion and spurious modes are also discussed.

193 citations

Journal ArticleDOI
TL;DR: The first four years of the CALIPSO lidar measurements have revealed the existence of an aerosol layer at the tropopause level associated with the Asian monsoon season in June, July and August as discussed by the authors.
Abstract: The first four years of the CALIPSO lidar measurements have revealed the existence of an aerosol layer at the tropopause level associated with the Asian monsoon season in June, July and August. This Asian Tropopause Aerosol Layer (ATAL) extends geographically from Eastern Mediterranean (down to North Africa) to Western China (down to Thailand), and vertically from 13 to 18 km. The Scattering Ratio inferred from CALIPSO shows values between 1.10. 1.15 on average with associated depolarization ratio of less than 5%. The Gaussian distribution of the points indicates that the mean value is statistically driven by an enhancement of the background aerosol level and not by episodic events such as a volcanic eruption or cloud contamination. Further satellite observations of aerosols and gases as well as field campaigns are urgently needed to characterize this layer, which is likely to be a significant source of non-volcanic aerosols for the global upper troposphere with a potential impact on its radiative and chemical balance

193 citations

Journal ArticleDOI
TL;DR: In this article, the SABER instrument was launched onboard the TIMED satellite in December 2001, and the authors derived profiles of kinetic temperature (Tk) from broadband measurements of CO2 15 μm limb emission, in combination with measurements of co2 4.3 μm emission used to derive CO2 volume mixing ratio (vmr).
Abstract: [1] The SABER instrument was launched onboard the TIMED satellite in December 2001. Vertical profiles of kinetic temperature (Tk) are derived from broadband measurements of CO2 15 μm limb emission, in combination with measurements of CO2 4.3 μm limb emission used to derive CO2 volume mixing ratio (vmr). Infrared emission from the CO2 ro-vibrational bands are in non-local thermodynamic equilibrium (non-LTE) in the mesosphere and lower thermosphere (MLT), requiring new radiation transfer and retrieval methods. In this paper we focus on Tk and show some of the first SABER observations of MLT Tk and compare SABER Tk profiles with rocket falling sphere (FS) measurements taken during the 2002 summer MaCWAVE campaign at Andoya, Norway (69°N, 16°E). The comparisons are very encouraging and demonstrate a significant advance in satellite remote sensing of MLT limb emission and the ability to retrieve Tk under extreme non-LTE conditions.

193 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental and computational study of the low-frequency oscillation observed in the flow over an airfoil at the onset of static stall is presented, and the experimental results agree well with the results of a two-dimensional Navier-Stokes code.
Abstract: An experimental and computational study of the low-frequency oscillation observed in the flow over an airfoil at the onset of static stall is presented. Wind-tunnel results obtained with two-dimensional airfoil models show that this phenomena takes place only with a transitional state of the separating boundary layer. It is noted that the flowfield does not involve a Karman vortex street. The experimental results agree well with the results of a two-dimensional Navier-Stokes code. The present study demonstrates that the low-frequency oscillations produce intense flow fluctuations which impart much larger unsteady forces to the airfoil than experienced by bluff-body shedding and which may represent the primary aerodynamics of stall flutter of blades and wings.

192 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797