scispace - formally typeset
Search or ask a question
Institution

Nagoya University

EducationNagoya, Japan
About: Nagoya University is a education organization based out in Nagoya, Japan. It is known for research contribution in the topics: Population & Catalysis. The organization has 58009 authors who have published 128227 publications receiving 3246340 citations. The organization is also known as: Nagoya Daigaku & Meidai.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
K. Hagiwara, Ken Ichi Hikasa1, Koji Nakamura, Masaharu Tanabashi1, M. Aguilar-Benitez, Claude Amsler2, R. M. Barnett3, Patricia R. Burchat4, C. D. Carone5, C. Caso, G. Conforto6, Olav Dahl3, Michael Doser7, Semen Eidelman8, Jonathan L. Feng9, L. K. Gibbons10, Maury Goodman11, Christoph Grab12, D. E. Groom3, Atul Gurtu7, Atul Gurtu13, K. G. Hayes14, J. J. Herna`ndez-Rey15, K. Honscheid16, Christopher Kolda17, Michelangelo L. Mangano7, David Manley18, Aneesh V. Manohar19, John March-Russell7, Alberto Masoni, Ramon Miquel3, Klaus Mönig, Hitoshi Murayama3, Hitoshi Murayama20, S. Sánchez Navas12, Keith A. Olive21, Luc Pape7, C. Patrignani, A. Piepke22, Matts Roos23, John Terning24, Nils A. Tornqvist23, T. G. Trippe3, Petr Vogel25, C. G. Wohl3, Ron L. Workman26, W-M. Yao3, B. Armstrong3, P. S. Gee3, K. S. Lugovsky, S. B. Lugovsky, V. S. Lugovsky, Marina Artuso27, D. Asner28, K. S. Babu29, E. L. Barberio7, Marco Battaglia7, H. Bichsel30, O. Biebel31, Philippe Bloch7, Robert N. Cahn3, Ariella Cattai7, R. S. Chivukula32, R. Cousins33, G. A. Cowan34, Thibault Damour35, K. Desler, R. J. Donahue3, D. A. Edwards, Victor Daniel Elvira, Jens Erler36, V. V. Ezhela, A Fassò7, W. Fetscher12, Brian D. Fields37, B. Foster38, Daniel Froidevaux7, Masataka Fukugita39, Thomas K. Gaisser40, L. Garren, H.-J. Gerber12, Frederick J. Gilman41, Howard E. Haber42, C. A. Hagmann28, J.L. Hewett4, Ian Hinchliffe3, Craig J. Hogan30, G. Höhler43, P. Igo-Kemenes44, John David Jackson3, Kurtis F Johnson45, D. Karlen, B. Kayser, S. R. Klein3, Konrad Kleinknecht46, I.G. Knowles47, P. Kreitz4, Yu V. Kuyanov, R. Landua7, Paul Langacker36, L. S. Littenberg48, Alan D. Martin49, Tatsuya Nakada7, Tatsuya Nakada50, Meenakshi Narain32, Paolo Nason, John A. Peacock47, Helen R. Quinn4, Stuart Raby16, Georg G. Raffelt31, E. A. Razuvaev, B. Renk46, L. Rolandi7, Michael T Ronan3, L.J. Rosenberg51, Christopher T. Sachrajda52, A. I. Sanda53, Subir Sarkar54, Michael Schmitt55, O. Schneider50, Douglas Scott56, W. G. Seligman57, Michael H. Shaevitz57, Torbjörn Sjöstrand58, George F. Smoot3, Stefan M Spanier4, H. Spieler3, N. J. C. Spooner59, Mark Srednicki60, A. Stahl, Todor Stanev40, M. Suzuki3, N. P. Tkachenko, German Valencia61, K. van Bibber28, Manuella Vincter62, D. R. Ward63, Bryan R. Webber63, M R Whalley49, Lincoln Wolfenstein41, J. Womersley, C. L. Woody48, O. V. Zenin 
Tohoku University1, University of Zurich2, Lawrence Berkeley National Laboratory3, Stanford University4, College of William & Mary5, University of Urbino6, CERN7, Budker Institute of Nuclear Physics8, University of California, Irvine9, Cornell University10, Argonne National Laboratory11, ETH Zurich12, Tata Institute of Fundamental Research13, Hillsdale College14, Spanish National Research Council15, Ohio State University16, University of Notre Dame17, Kent State University18, University of California, San Diego19, University of California, Berkeley20, University of Minnesota21, University of Alabama22, University of Helsinki23, Los Alamos National Laboratory24, California Institute of Technology25, George Washington University26, Syracuse University27, Lawrence Livermore National Laboratory28, Oklahoma State University–Stillwater29, University of Washington30, Max Planck Society31, Boston University32, University of California, Los Angeles33, Royal Holloway, University of London34, Université Paris-Saclay35, University of Pennsylvania36, University of Illinois at Urbana–Champaign37, University of Bristol38, University of Tokyo39, University of Delaware40, Carnegie Mellon University41, University of California, Santa Cruz42, Karlsruhe Institute of Technology43, Heidelberg University44, Florida State University45, University of Mainz46, University of Edinburgh47, Brookhaven National Laboratory48, Durham University49, University of Lausanne50, Massachusetts Institute of Technology51, University of Southampton52, Nagoya University53, University of Oxford54, Northwestern University55, University of British Columbia56, Columbia University57, Lund University58, University of Sheffield59, University of California, Santa Barbara60, Iowa State University61, University of Alberta62, University of Cambridge63
TL;DR: This biennial Review summarizes much of Particle Physics using data from previous editions, plus 2205 new measurements from 667 papers, and features expanded coverage of CP violation in B mesons and of neutrino oscillations.
Abstract: This biennial Review summarizes much of Particle Physics. Using data from previous editions, plus 2205 new measurements from 667 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. This edition features expanded coverage of CP violation in B mesons and of neutrino oscillations. For the first time we cover searches for evidence of extra dimensions (both in the particle listings and in a new review). Another new review is on Grand Unified Theories. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

5,143 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the modified isotope dilution mass spectrometry (IDMS)-traceable 4-variable modified modification of Diet in Renal Disease (MDRD) study equation to estimate the glomerular filtration rate (GFR) for Japanese patients.

4,862 citations

Journal ArticleDOI
02 Jun 2005-Nature
TL;DR: It is shown that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.
Abstract: The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,1603 particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.

4,814 citations

Journal ArticleDOI
Kaoru Hagiwara, Ken Ichi Hikasa1, Koji Nakamura, Masaharu Tanabashi1, M. Aguilar-Benitez, Claude Amsler2, R. M. Barnett3, P. R. Burchat4, C. D. Carone5, C. Caso6, G. Conforto7, Olav Dahl3, Michael Doser8, Semen Eidelman9, Jonathan L. Feng10, L. K. Gibbons11, M. C. Goodman12, Christoph Grab13, D. E. Groom3, Atul Gurtu14, Atul Gurtu8, K. G. Hayes15, J.J. Hernández-Rey16, K. Honscheid17, Christopher Kolda18, Michelangelo L. Mangano8, D. M. Manley19, Aneesh V. Manohar20, John March-Russell8, Alberto Masoni, Ramon Miquel3, Klaus Mönig, Hitoshi Murayama3, Hitoshi Murayama21, S. Sánchez Navas13, Keith A. Olive22, Luc Pape8, C. Patrignani6, A. Piepke23, Matts Roos24, John Terning25, Nils A. Tornqvist24, T. G. Trippe3, Petr Vogel26, C. G. Wohl3, Ron L. Workman27, W-M. Yao3, B. Armstrong3, P. S. Gee3, K. S. Lugovsky, S. B. Lugovsky, V. S. Lugovsky, Marina Artuso28, D. Asner29, K. S. Babu30, E. L. Barberio8, Marco Battaglia8, H. Bichsel31, O. Biebel32, P. Bloch8, Robert N. Cahn3, Ariella Cattai8, R.S. Chivukula33, R. Cousins34, G. A. Cowan35, Thibault Damour36, K. Desler, R. J. Donahue3, D. A. Edwards, Victor Daniel Elvira37, Jens Erler38, V. V. Ezhela, A Fassò8, W. Fetscher13, Brian D. Fields39, B. Foster40, Daniel Froidevaux8, Masataka Fukugita41, Thomas K. Gaisser42, L. A. Garren37, H J Gerber13, Frederick J. Gilman43, Howard E. Haber44, C. A. Hagmann29, J.L. Hewett4, Ian Hinchliffe3, Craig J. Hogan31, G. Höhler45, P. Igo-Kemenes46, John David Jackson3, Kurtis F Johnson47, D. Karlen48, B. Kayser37, S. R. Klein3, Konrad Kleinknecht49, I.G. Knowles50, P. Kreitz4, Yu V. Kuyanov, R. Landua8, Paul Langacker38, L. S. Littenberg51, Alan D. Martin52, Tatsuya Nakada8, Tatsuya Nakada53, Meenakshi Narain33, Paolo Nason, John A. Peacock54, H. R. Quinn55, Stuart Raby17, Georg G. Raffelt32, E. A. Razuvaev, B. Renk49, L. Rolandi8, Michael T Ronan3, L.J. Rosenberg54, C.T. Sachrajda55, A. I. Sanda56, Subir Sarkar57, Michael Schmitt58, O. Schneider53, Douglas Scott59, W. G. Seligman60, M. H. Shaevitz60, Torbjörn Sjöstrand61, George F. Smoot3, Stefan M Spanier4, H. Spieler3, N. J. C. Spooner62, Mark Srednicki63, Achim Stahl, Todor Stanev42, M. Suzuki3, N. P. Tkachenko, German Valencia64, K. van Bibber29, Manuella Vincter65, D. R. Ward66, Bryan R. Webber66, M R Whalley52, Lincoln Wolfenstein43, J. Womersley37, C. L. Woody51, Oleg Zenin 
Tohoku University1, University of Zurich2, Lawrence Berkeley National Laboratory3, Stanford University4, College of William & Mary5, University of Genoa6, University of Urbino7, CERN8, Budker Institute of Nuclear Physics9, University of California, Irvine10, Cornell University11, Argonne National Laboratory12, ETH Zurich13, Tata Institute of Fundamental Research14, Hillsdale College15, Spanish National Research Council16, Ohio State University17, University of Notre Dame18, Kent State University19, University of California, San Diego20, University of California, Berkeley21, University of Minnesota22, University of Alabama23, University of Helsinki24, Los Alamos National Laboratory25, California Institute of Technology26, George Washington University27, Syracuse University28, Lawrence Livermore National Laboratory29, Oklahoma State University–Stillwater30, University of Washington31, Max Planck Society32, Boston University33, University of California, Los Angeles34, Royal Holloway, University of London35, Université Paris-Saclay36, Fermilab37, University of Pennsylvania38, University of Illinois at Urbana–Champaign39, University of Bristol40, University of Tokyo41, University of Delaware42, Carnegie Mellon University43, University of California, Santa Cruz44, Karlsruhe Institute of Technology45, Heidelberg University46, Florida State University47, Carleton University48, University of Mainz49, University of Edinburgh50, Brookhaven National Laboratory51, Durham University52, University of Lausanne53, Massachusetts Institute of Technology54, University of Southampton55, Nagoya University56, University of Oxford57, Northwestern University58, University of British Columbia59, Columbia University60, Lund University61, University of Sheffield62, University of California, Santa Barbara63, Iowa State University64, University of Alberta65, University of Cambridge66
TL;DR: The Particle Data Group's biennial review as mentioned in this paper summarizes much of particle physics, using data from previous editions, plus 2658 new measurements from 644 papers, and lists, evaluates, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, V-cb & V-ub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

4,465 citations


Authors

Showing all 58313 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Julie E. Buring186950132967
Kazuo Shinozaki178668128279
Hyun-Chul Kim1764076183227
Kari Alitalo174817114231
Yang Gao1682047146301
Takashi Taniguchi1522141110658
Jongmin Lee1502257134772
Carlos Escobar148118495346
Martin J. Blaser147820104104
Jack L. Strominger14582689885
E. L. Barberio1431605115709
Y. Choi141163198709
Kazuhiko Hara1411956107697
K. Sliwa1411688104892
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

99% related

University of Tokyo
337.5K papers, 10.1M citations

98% related

University of Tsukuba
79.4K papers, 1.9M citations

97% related

Osaka University
185.6K papers, 5.1M citations

97% related

Hokkaido University
115.4K papers, 2.6M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022537
20215,178
20205,288
20195,048
20184,920