scispace - formally typeset
Search or ask a question

Showing papers by "Nagoya University published in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions.
Abstract: Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain. © 2013 Macmillan Publishers Limited.

1,668 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reveal two broad regimes of phytoplankton nutrient limitation in the modern upper ocean: Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow.
Abstract: Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry.

1,516 citations


Journal ArticleDOI
TL;DR: It is demonstrated that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle.
Abstract: The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

1,009 citations


Journal ArticleDOI
TL;DR: This integrated molecular analysis of clear-cell renal cell carcinoma unmasked new correlations between DNA methylation, gene mutation and/or gene expression and copy number profiles, enabling the stratification of clinical risks for patients with ccRCC.
Abstract: Clear-cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer and its molecular pathogenesis is incompletely understood. Here we report an integrated molecular study of ccRCC in which ≥100 ccRCC cases were fully analyzed by whole-genome and/or whole-exome and RNA sequencing as well as by array-based gene expression, copy number and/or methylation analyses. We identified a full spectrum of genetic lesions and analyzed gene expression and DNA methylation signatures and determined their impact on tumor behavior. Defective VHL-mediated proteolysis was a common feature of ccRCC, which was caused not only by VHL inactivation but also by new hotspot TCEB1 mutations, which abolished Elongin C-VHL binding, leading to HIF accumulation. Other newly identified pathways and components recurrently mutated in ccRCC included PI3K-AKT-mTOR signaling, the KEAP1-NRF2-CUL3 apparatus, DNA methylation, p53-related pathways and mRNA processing. This integrated molecular analysis unmasked new correlations between DNA methylation, gene mutation and/or gene expression and copy number profiles, enabling the stratification of clinical risks for patients with ccRCC.

938 citations


Journal ArticleDOI
Moinuddin Ahmed1, Kevin J. Anchukaitis2, Kevin J. Anchukaitis3, Asfawossen Asrat4, H. P. Borgaonkar5, Martina Braida6, Brendan M. Buckley2, Ulf Büntgen7, Brian M. Chase8, Brian M. Chase9, Duncan A. Christie10, Duncan A. Christie11, Edward R. Cook2, Mark A. J. Curran12, Mark A. J. Curran13, Henry F. Diaz14, Jan Esper15, Ze-Xin Fan16, Narayan Prasad Gaire17, Quansheng Ge18, Joelle Gergis19, J. Fidel González-Rouco20, Hugues Goosse21, Stefan W. Grab22, Nicholas E. Graham23, Rochelle Graham23, Martin Grosjean24, Sami Hanhijärvi25, Darrell S. Kaufman26, Thorsten Kiefer, Katsuhiko Kimura27, Atte Korhola25, Paul J. Krusic28, Antonio Lara11, Antonio Lara10, Anne-Marie Lézine29, Fredrik Charpentier Ljungqvist28, Andrew Lorrey30, Jürg Luterbacher31, Valérie Masson-Delmotte29, Danny McCarroll32, Joseph R. McConnell33, Nicholas P. McKay26, Mariano S. Morales34, Andrew D. Moy12, Andrew D. Moy13, Robert Mulvaney35, Ignacio A. Mundo34, Takeshi Nakatsuka36, David J. Nash37, David J. Nash22, Raphael Neukom7, Sharon E. Nicholson38, Hans Oerter39, Jonathan G. Palmer40, Jonathan G. Palmer41, Steven J. Phipps40, María Prieto32, Andrés Rivera42, Masaki Sano36, Mirko Severi43, Timothy M. Shanahan44, Xuemei Shao18, Feng Shi, Michael Sigl33, Jason E. Smerdon2, Olga Solomina45, Eric J. Steig46, Barbara Stenni6, Meloth Thamban47, Valerie Trouet48, Chris S. M. Turney40, Mohammed Umer4, Tas van Ommen13, Tas van Ommen12, Dirk Verschuren49, A. E. Viau50, Ricardo Villalba34, Bo Møllesøe Vinther51, Lucien von Gunten, Sebastian Wagner, Eugene R. Wahl14, Heinz Wanner24, Johannes P. Werner31, James W. C. White52, Koh Yasue53, Eduardo Zorita 
Federal Urdu University1, Columbia University2, Woods Hole Oceanographic Institution3, Addis Ababa University4, Indian Institute of Tropical Meteorology5, University of Trieste6, Swiss Federal Institute for Forest, Snow and Landscape Research7, University of Bergen8, University of Montpellier9, Austral University of Chile10, University of Chile11, University of Tasmania12, Australian Antarctic Division13, National Oceanic and Atmospheric Administration14, University of Mainz15, Xishuangbanna Tropical Botanical Garden16, Nepal Academy of Science and Technology17, Chinese Academy of Sciences18, University of Melbourne19, Complutense University of Madrid20, Université catholique de Louvain21, University of the Witwatersrand22, Hydrologic Research Center23, University of Bern24, University of Helsinki25, Northern Arizona University26, Fukushima University27, Stockholm University28, Université Paris-Saclay29, National Institute of Water and Atmospheric Research30, University of Giessen31, Swansea University32, Desert Research Institute33, National Scientific and Technical Research Council34, British Antarctic Survey35, Nagoya University36, University of Brighton37, Florida State University38, Alfred Wegener Institute for Polar and Marine Research39, University of New South Wales40, University of Exeter41, Centro de Estudios Científicos42, University of Florence43, University of Texas at Austin44, Russian Academy of Sciences45, University of Washington46, National Centre for Antarctic and Ocean Research47, University of Arizona48, Ghent University49, University of Ottawa50, University of Copenhagen51, University of Colorado Boulder52, Shinshu University53
TL;DR: The authors reconstructed past temperatures for seven continental-scale regions during the past one to two millennia and found that the most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century.
Abstract: Past global climate changes had strong regional expression To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years

885 citations


Journal ArticleDOI
Markus Ackermann, Marco Ajello1, Alice Allafort2, Luca Baldini3  +197 moreInstitutions (42)
15 Feb 2013-Science
TL;DR: The characteristic pion-decay feature is detected in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope, providing direct evidence that cosmic-ray protons are accelerated in SNRs.
Abstract: Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.

846 citations


Journal ArticleDOI
TL;DR: A nongenetic method for mass-producing cardiomyocytes from mouse and human PSC derivatives that is based on the marked biochemical differences in glucose and lactate metabolism between cardiomers and noncardiomyocyte and could facilitate progress toward PSC-based cardiac regenerative therapy.

805 citations


Journal ArticleDOI
B. S. Acharya1, Marcos Daniel Actis2, T. Aghajani3, G. Agnetta4  +979 moreInstitutions (122)
TL;DR: The Cherenkov Telescope Array (CTA) as discussed by the authors is a very high-energy (VHE) gamma ray observatory with an international collaboration with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America.

701 citations


Journal ArticleDOI
TL;DR: Together, the results show how HDAC inhibition can epigenetically restore BIM function and death sensitivity of EGFR-TKI in cases of EGfr-mutant NSCLC where resistance to EGF receptor tyrosine kinase inhibitors is associated with a common BIM polymorphism.
Abstract: BIM (BCL2L11) is a BH3-only proapoptotic member of the Bcl-2 protein family. BIM upregulation is required for apoptosis induction by EGF receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKI) in EGFR-mutant forms of non-small cell lung cancer (NSCLC). Notably, a BIM deletion polymorphism occurs naturally in 12.9% of East Asian individuals, impairing the generation of the proapoptotic isoform required for the EGFR-TKIs gefitinib and erlotinib and therefore conferring an inherent drug-resistant phenotype. Indeed, patients with NSCLC, who harbored this host BIM polymorphism, exhibited significantly inferior responses to EGFR-TKI treatment than individuals lacking this polymorphism. In an attempt to correct this response defect in the resistant group, we investigated whether the histone deacetylase (HDAC) inhibitor vorinostat could circumvent EGFR-TKI resistance in EGFR-mutant NSCLC cell lines that also harbored the BIM polymorphism. Consistent with our clinical observations, we found that such cells were much less sensitive to gefitinib-induced apoptosis than EGFR-mutant cells, which did not harbor the polymorphism. Notably, vorinostat increased expression in a dose-dependent manner of the proapoptotic BH3 domain-containing isoform of BIM, which was sufficient to restore gefitinib death sensitivity in the EGFR mutant, EGFR-TKI-resistant cells. In xenograft models, while gefitinib induced marked regression via apoptosis of tumors without the BIM polymorphism, its combination with vorinostat was needed to induce marked regression of tumors with the BIM polymorphism in the same manner. Together, our results show how HDAC inhibition can epigenetically restore BIM function and death sensitivity of EGFR-TKI in cases of EGFR-mutant NSCLC where resistance to EGFR-TKI is associated with a common BIM polymorphism.

695 citations


Journal ArticleDOI
M. Ablikim, M. N. Achasov1, Xiaocong Ai, O. Albayrak2  +365 moreInstitutions (50)
TL;DR: In this article, the process e(+)e(-) -> pi(+)pi(-) J/psi at a center-of-mass energy of 4.260 GeV using a 525 pb(-1) data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider was studied.
Abstract: We study the process e(+)e(-) -> pi(+)pi(-) J/psi at a center-of-mass energy of 4.260 GeV using a 525 pb(-1) data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross section is measured to be (62.9 +/- 1.9 +/- 3.7) pb, consistent with the production of the Y(4260). We observe a structure at around 3.9 GeV/c(2) in the pi(+/-) J/psi mass spectrum, which we refer to as the Z(c)(3900). If interpreted as a new particle, it is unusual in that it carries an electric charge and couples to charmonium. A fit to the pi(+/-) J/psi invariant mass spectrum, neglecting interference, results in a mass of (3899.0 +/- 3.6 +/- 4.9) MeV/c(2) and a width of (46 +/- 10 +/- 20) MeV. Its production ratio is measured to be R = (sigma(e(+)e(-) -> pi(+/-) Z(c)(3900)(-/+) -> pi(+)pi(-) J/psi)/sigma(e(+)e(-) -> pi(+)pi(-) J/psi)) = (21.5 +/- 3.3 +/- 7.5)%. In all measurements the first errors are statistical and the second are systematic.

677 citations


Journal ArticleDOI
TL;DR: A π-conjugated nanosheet comprising planar nickel bis(dithiolene) complexes was synthesized by a bottom-up method and found that the crystalline portion of the bulk material comprised a staggered stack of nanosheets.
Abstract: A π-conjugated nanosheet comprising planar nickel bis(dithiolene) complexes was synthesized by a bottom-up method. A liquid–liquid interfacial reaction using benzenehexathiol in the organic phase and nickel(II) acetate in the aqueous phase produced a semiconducting bulk material with a thickness of several micrometers. Powder X-ray diffraction analysis revealed that the crystalline portion of the bulk material comprised a staggered stack of nanosheets. A single-layer nanosheet was successfully realized using a gas–liquid interfacial reaction. Atomic force microscopy and scanning tunneling microscopy confirmed that the π-conjugated nanosheet was single-layered. Modulation of the oxidation state of the nanosheet was possible using chemical redox reactions.

Journal ArticleDOI
Z. Q. Liu, C. P. Shen1, C. Z. Yuan, I. Adachi  +188 moreInstitutions (56)
TL;DR: In a study of Y(4260) → π+ π- J/φ decays, a structure is observed in the M(π(±)J/ψ) mass spectrum with 5.2σ significance that can be interpreted as a new charged charmoniumlike state.
Abstract: The cross section for ee+ e- → π+ π- J/ψ between 3.8 and 5.5 GeV is measured with a 967 fb(-1) data sample collected by the Belle detector at or near the Υ(nS) (n = 1,2,…,5) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of π+ π- J/ψ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parametrization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of Y(4260) → π+ π- J/ψ decays, a structure is observed in the M(π(±)J/ψ) mass spectrum with 5.2σ significance, with mass M = (3894.5 ± 6.6 ± 4.5) MeV/c2 and width Γ = (63 ± 24 ± 26) MeV/c2, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmoniumlike state.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah  +2942 moreInstitutions (201)
TL;DR: In this paper, the spin and parity quantum numbers of the Higgs boson were studied based on the collision data collected by the ATLAS experiment at the LHC, and the results showed that the standard model spin-parity J(...

Journal ArticleDOI
TL;DR: It is indicated that minocycline selectively inhibits the microglia polarization to a proinflammatory state, and provides a basis for understanding pathogeneses of many diseases accompanied by microglial activation.
Abstract: Minocycline is commonly used to inhibit microglial activation. It is widely accepted that activated microglia exert dual functions, that is, pro-inflammatory (M1) and anti-inflammatory (M2) functions. The in vivo status of activated microglia is probably on a continuum between these two extreme states. However, the mechanisms regulating microglial polarity remain elusive. Here, we addressed this question focusing on minocycline. We used SOD1G93A mice as a model, which exhibit the motor neuron-specific neurodegenerative disease, amyotrophic lateral sclerosis. Administration of minocycline attenuated the induction of the expression of M1 microglia markers during the progressive phase, whereas it did not affect the transient enhancement of expression of M2 microglia markers during the early pathogenesis phase. This selective inhibitory effect was confirmed using primary cultured microglia stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4, which induced M1 or M2 polarization, respectively. Furthermore, minocycline inhibited the upregulation of NF-κB in the LPS-stimulated primary cultured microglia and in the spinal cord of SOD1G93A mice. On the other hand, IL-4 did not induce upregulation of NF-κB. This study indicates that minocycline selectively inhibits the microglia polarization to a proinflammatory state, and provides a basis for understanding pathogeneses of many diseases accompanied by microglial activation.

Journal ArticleDOI
TL;DR: In this article, present day tropospheric ozone and its changes between 1850 and 2100 are considered, analysing 15 global models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP).
Abstract: . Present day tropospheric ozone and its changes between 1850 and 2100 are considered, analysing 15 global models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean compares well against present day observations. The seasonal cycle correlates well, except for some locations in the tropical upper troposphere. Most (75 %) of the models are encompassed with a range of global mean tropospheric ozone column estimates from satellite data, but there is a suggestion of a high bias in the Northern Hemisphere and a low bias in the Southern Hemisphere, which could indicate deficiencies with the ozone precursor emissions. Compared to the present day ensemble mean tropospheric ozone burden of 337 ± 23 Tg, the ensemble mean burden for 1850 time slice is ~30% lower. Future changes were modelled using emissions and climate projections from four Representative Concentration Pathways (RCPs). Compared to 2000, the relative changes in the ensemble mean tropospheric ozone burden in 2030 (2100) for the different RCPs are: −4% (−16%) for RCP2.6, 2% (−7%) for RCP4.5, 1% (−9%) for RCP6.0, and 7% (18%) for RCP8.5. Model agreement on the magnitude of the change is greatest for larger changes. Reductions in most precursor emissions are common across the RCPs and drive ozone decreases in all but RCP8.5, where doubled methane and a 40–150% greater stratospheric influx (estimated from a subset of models) increase ozone. While models with a high ozone burden for the present day also have high ozone burdens for the other time slices, no model consistently predicts large or small ozone changes; i.e. the magnitudes of the burdens and burden changes do not appear to be related simply, and the models are sensitive to emissions and climate changes in different ways. Spatial patterns of ozone changes are well correlated across most models, but are notably different for models without time evolving stratospheric ozone concentrations. A unified approach to ozone budget specifications and a rigorous investigation of the factors that drive tropospheric ozone is recommended to help future studies attribute ozone changes and inter-model differences more clearly.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2942 moreInstitutions (200)
TL;DR: In this article, the production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs were measured using the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of about 25/fb.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2897 moreInstitutions (184)
TL;DR: In this article, the luminosity calibration for the ATLAS detector at the LHC during pp collisions at root s = 7 TeV in 2010 and 2011 is presented, and a luminosity uncertainty of delta L/L = +/- 3.5 % is obtained.
Abstract: The luminosity calibration for the ATLAS detector at the LHC during pp collisions at root s = 7 TeV in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at root s = 7 TeV. A luminosity uncertainty of delta L/L = +/- 3.5 % is obtained for the 47 pb(-1) of data delivered to ATLAS in 2010, and an uncertainty of delta L/L = +/- 1.8 % is obtained for the 5.5 fb(-1) delivered in 2011.

Journal ArticleDOI
TL;DR: In this article, a review of lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community is presented.
Abstract: We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s.

Journal ArticleDOI
TL;DR: Surgical treatment of perihilar cholangiocarcinoma has been evolving steadily, with expanded surgical indication, decreased mortality, and increased survival, with lymph node metastasis was the strongest prognostic indicator.
Abstract: Objective:To review our 34-year experience with 574 consecutive resections for perihilar cholangiocarcinoma and to evaluate the progress made in surgical treatment of this disease.Background:Few studies have reported improved surgical outcomes for perihilar cholangiocarcinoma; therefore, it is still

Journal ArticleDOI
TL;DR: How circadian clock-regulated components of the Arabidopsis photoperiodic flowering pathway interactively regulate the expression of FT, the main component of florigen, in leaves is described.

Journal ArticleDOI
TL;DR: In this paper, the issues of sustainability coverage, pre-requisites, local adaptability, scoring and weighting, participation, reporting, and applicability are discussed using a content analysis, and the results of this study indicate that most of the tools are not doing well regarding the coverage of social, economic, and institutional aspects of sustainability.

Journal ArticleDOI
TL;DR: It is shown that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells, and may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems.
Abstract: Covalent organic frameworks can utilize π-stacking interactions for the formation of ordered, layered frameworks. Here, the authors report an ordered framework with tailored π-interactions resulting in periodic ordering in three dimensions, which leads to enhanced stability and electronic properties.

Journal ArticleDOI
TL;DR: In this paper, a detailed elemental abundance analysis of 32 dwarfs and subgiant stars in the Galactic bulge is presented, based on high-resolution spectra obtained during gravitational microlensing events.
Abstract: Based on high-resolution spectra obtained during gravitational microlensing events we present a detailed elemental abundance analysis of 32 dwarf and subgiant stars in the Galactic bulge. Combined with the sample of 26 stars from the previous papers in this series, we now have 58 microlensed bulge dwarfs and subgiants that have been homogeneously analysed. The main characteristics of the sample and the findings that can be drawn are: (i) the metallicity distribution (MDF) is wide and spans all metallicities between [Fe/H] = −1.9 to +0.6; (ii) the dip in the MDF around solar metallicity that was apparent in our previous analysis of a smaller sample (26 microlensed stars) is no longer evident; instead it has a complex structure and indications of multiple components are starting to emerge. A tentative interpretation is that there could be different stellar populations at interplay, each with a different scale height: the thin disk, the thick disk, and a bar population; (iii) the stars with [Fe/H] ≲ −0.1 are old with ages between 10 and 12 Gyr; (iv) the metal-rich stars with [Fe/H] ≳ −0.1 show a wide variety of ages, ranging from 2 to 12 Gyr with a distribution that has a dominant peak around 4−5 Gyr and a tail towards higher ages; (v) there are indications in the [α/Fe]−[Fe/H] abundance trends that the “knee” occurs around [Fe/H] = −0.3 to −0.2, which is a slightly higher metallicity as compared to the “knee” for the local thick disk. This suggests that the chemical enrichment of the metal-poor bulge has been somewhat faster than what is observed for the local thick disk. The results from the microlensed bulge dwarf stars in combination with other findings in the literature, in particular the evidence that the bulge has cylindrical rotation, indicate that the Milky Way could be an almost pure disk galaxy. The bulge would then just be a conglomerate of the other Galactic stellar populations (thin disk, thick disk, halo, and ...?), residing together in the central parts of the Galaxy, influenced by the Galactic bar.

Journal ArticleDOI
TL;DR: Application of biochar in soil has been shown to result in decreased efficacy of pesticides, which indicates a trade-off between the potentially promising effect of bio char on pesticide remediation and its negative effect on pesticide efficacy.

Journal ArticleDOI
TL;DR: Experimental data reveal how the properties of such a large graphene subunit are affected by multiple odd-membered-ring defects.
Abstract: Graphite, the most stable form of elemental carbon, consists of pure carbon sheets stacked upon one another like reams of paper. Individual sheets, known as graphene, prefer planar geometries as a consequence of the hexagonal honeycomb-like arrangements of trigonal carbon atoms that comprise their two-dimensional networks. Defects in the form of non-hexagonal rings in such networks cause distortions away from planarity. Herein we report an extreme example of this phenomenon. A 26-ring C80H30 nanographene that incorporates five seven-membered rings and one five-membered ring embedded in a hexagonal lattice was synthesized by stepwise chemical methods, isolated, purified and fully characterized spectroscopically. Its grossly warped structure was revealed by single-crystal X-ray crystallography. An independent synthetic route to a freely soluble derivative of this new type of 'nanocarbon' is also reported. Experimental data reveal how the properties of such a large graphene subunit are affected by multiple odd-membered-ring defects.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2912 moreInstitutions (183)
TL;DR: Two-particle correlations in relative azimuthal angle and pseudorapidity are measured using the ATLAS detector at the LHC and the resultant Δø correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δø modulation for all ΣE(T)(Pb) ranges and particle p(T).
Abstract: Two-particle correlations in relative azimuthal angle (Delta phi) and pseudorapidity (Delta eta) are measured in root S-NN = 5.02 TeV p + Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 mu b(-1) of data as a function of transverse momentum (p(T)) and the transverse energy (Sigma E-T(Pb)) summed over 3.1 < eta < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2 < vertical bar Delta eta vertical bar < 5) "near-side" (Delta phi similar to 0) correlation that grows rapidly with increasing Sigma E-T(Pb). A long-range "away-side" (Delta phi similar to pi) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Sigma E-T(Pb), is found to match the near-side correlation in magnitude, shape (in Delta eta and Delta phi) and Sigma E-T(Pb) dependence. The resultant Delta phi correlation is approximately symmetric about pi/2, and is consistent with a dominant cos2 Delta phi modulation for all Sigma E-T(Pb) ranges and particle p(T).

Journal ArticleDOI
TL;DR: This work describes recent developments in nickel-catalyzed biaryl coupling methodology, along with mechanistic studies and applications that focus on nickel-Catalyzed coupling reactions in which “unreactive” bonds are converted into biaryl moieties.

Journal ArticleDOI
Mirko Manchia1, Mazda Adli2, Nirmala Akula3, Raffaella Ardau, Jean-Michel Aubry4, Lena Backlund5, Claudio E. M. Banzato6, Bernhard T. Baune7, Frank Bellivier8, Susanne Bengesser9, Joanna M. Biernacka10, Clara Brichant-Petitjean8, Elise Bui3, Cynthia V. Calkin1, Andrew T. A. Cheng11, Caterina Chillotti, Sven Cichon12, Scott R. Clark7, Piotr M. Czerski, Clarissa de Rosalmeida Dantas6, Maria Del Zompo13, J. Raymond DePaulo14, Sevilla D. Detera-Wadleigh3, Bruno Etain15, Peter Falkai16, Louise Frisén5, Mark A. Frye10, Janice M. Fullerton17, Sébastien Gard, Julie Garnham1, Fernando S. Goes14, Paul Grof18, Oliver Gruber19, Ryota Hashimoto20, Joanna Hauser, Urs Heilbronner19, Rebecca Hoban21, Rebecca Hoban22, Liping Hou3, Stéphane Jamain15, Jean-Pierre Kahn, Layla Kassem3, Tadafumi Kato, John R. Kelsoe21, John R. Kelsoe22, Sarah Kittel-Schneider23, Sebastian Kliwicki, Po-Hsiu Kuo24, Ichiro Kusumi25, Gonzalo Laje3, Catharina Lavebratt5, Marion Leboyer15, Susan G. Leckband22, Susan G. Leckband21, Carlos Jaramillo26, Mario Maj27, Alain Malafosse4, Lina Martinsson5, Takuya Masui25, Philip B. Mitchell28, Frank Mondimore14, Palmiero Monteleone27, Audrey Nallet4, Maria Neuner23, Tomas Novak3, Claire O'Donovan1, Urban Ösby5, Norio Ozaki29, Norio Ozaki30, Roy H. Perlis31, Andrea Pfennig32, James B. Potash14, James B. Potash33, Daniela Reich-Erkelenz19, Andreas Reif23, Eva Z. Reininghaus9, Sara Richardson3, Guy A. Rouleau34, Janusz K. Rybakowski, Martin Schalling5, Peter R. Schofield17, O. Schubert7, Barbara W. Schweizer14, Florian Seemüller16, Maria Grigoroiu-Serbanescu, Giovanni Severino13, Lisa R. Seymour10, Claire Slaney1, Jordan W. Smoller31, Alessio Squassina13, Thomas Stamm2, Jo Steele3, Pavla Stopkova3, Sarah K. Tighe14, Alfonso Tortorella27, Gustavo Turecki, Naomi R. Wray35, Adam Wright28, Peter P. Zandi14, David Zilles19, Michael Bauer32, Marcella Rietschel36, Francis J. McMahon3, Thomas G. Schulze, Martin Alda1 
19 Jun 2013
TL;DR: The key phenotypic measures of the “Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder” scale currently used in the Consortium on lithium Genetics (ConLiGen) study are reported.
Abstract: OBJECTIVE: The assessment of response to lithium maintenance treatment in bipolar disorder (BD) is complicated by variable length of treatment, unpredictable clinical course, and often inconsistent compliance. Prospective and retrospective methods of assessment of lithium response have been proposed in the literature. In this study we report the key phenotypic measures of the "Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder" scale currently used in the Consortium on Lithium Genetics (ConLiGen) study. MATERIALS AND METHODS: Twenty-nine ConLiGen sites took part in a two-stage case-vignette rating procedure to examine inter-rater agreement [Kappa (κ)] and reliability [intra-class correlation coefficient (ICC)] of lithium response. Annotated first-round vignettes and rating guidelines were circulated to expert research clinicians for training purposes between the two stages. Further, we analyzed the distributional properties of the treatment response scores available for 1,308 patients using mixture modeling. RESULTS: Substantial and moderate agreement was shown across sites in the first and second sets of vignettes (κ = 0.66 and κ = 0.54, respectively), without significant improvement from training. However, definition of response using the A score as a quantitative trait and selecting cases with B criteria of 4 or less showed an improvement between the two stages (ICC1 = 0.71 and ICC2 = 0.75, respectively). Mixture modeling of score distribution indicated three subpopulations (full responders, partial responders, non responders). CONCLUSIONS: We identified two definitions of lithium response, one dichotomous and the other continuous, with moderate to substantial inter-rater agreement and reliability. Accurate phenotypic measurement of lithium response is crucial for the ongoing ConLiGen pharmacogenomic study.

Journal ArticleDOI
TL;DR: The distinct luminescent responses of a new organic fluorophore, tetrathiazolylthiophene, to these stresses are reported, which include a high-pressure single-crystal X-ray diffraction analysis and the different mechanisms of a blue shift by grinding crystals and of a red shift under hydrostatic pressure.
Abstract: Luminescent mechanochromism has been intensively studied in the past few years. However, the difference in the anisotropic grinding and the isotropic compression is not clearly distinguished in many cases, in spite of the importance of this discrimination for the application of such mechanochromic materials. We now report the distinct luminescent responses of a new organic fluorophore, tetrathiazolylthiophene, to these stresses. The multichromism is achieved over the entire visible region using the single fluorophore. The different mechanisms of a blue shift by grinding crystals and of a red shift under hydrostatic pressure are fully investigated, which includes a high-pressure single-crystal X-ray diffraction analysis. The anisotropic and isotropic modes of mechanical loading suppress and enhance the excimer formation, respectively, in the 3D hydrogen-bond network.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the short-lived drivers of climate change in current climate models and evaluated the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5).
Abstract: . The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980–2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models' all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) −0.26 W m−2; −0.06 to −0.49 W m−2. Screening based on model skill in capturing observed AOD yields a best estimate of −0.42 W m−2; −0.33 to −0.50 W m−2, including adjustment for missing aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to −58%) to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is −1.17 W m−2; −0.71 to −1.44 W m−2. Thus adjustments, including clouds, typically cause greater forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global aerosol RF peaks in most models around 1980, declining thereafter with only weak sensitivity to the Representative Concentration Pathway (RCP). One model, however, projects approximately stable RF levels, while two show increasingly negative RF due to nitrate (not included in most models). Aerosol ERF, in contrast, becomes more negative during 1980 to 2000. During this period, increased Asian emissions appear to have a larger impact on aerosol ERF than European and North American decreases due to their being upwind of the large, relatively pristine Pacific Ocean. There is no clear relationship between historical aerosol ERF and climate sensitivity in the CMIP5 subset of ACCMIP models. In the ACCMIP/CMIP5 models, historical aerosol ERF of about −0.8 to −1.5 W m−2 is most consistent with observed historical warming. Aerosol ERF masks a large portion of greenhouse forcing during the late 20th and early 21st century at the global scale. Regionally, aerosol ERF is so large that net forcing is negative over most industrialized and biomass burning regions through 1980, but remains strongly negative only over east and southeast Asia by 2000. Net forcing is strongly positive by 1980 over most deserts, the Arctic, Australia, and most tropical oceans. Both the magnitude of and area covered by positive forcing expand steadily thereafter.