scispace - formally typeset
Search or ask a question
Institution

Pacific Northwest National Laboratory

FacilityRichland, Washington, United States
About: Pacific Northwest National Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Catalysis & Aerosol. The organization has 11581 authors who have published 27934 publications receiving 1120489 citations. The organization is also known as: PNL & PNNL.
Topics: Catalysis, Aerosol, Mass spectrometry, Ion, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, three model compounds were chosen to represent cellulose, hemicellulose, and lignin components in the case of lignocellulosic biomass.
Abstract: Bio-oil (product liquids from fast pyrolysis of biomass) is a complex mixture of oxygenates derived from the thermal breakdown of the biopolymers in biomass. In the case of lignocellulosic biomass, the structures of three major components, cellulose, hemicellulose and lignin, are well-represented by the bio-oil components. To study the chemical mechanisms of catalytic hydroprocessing of bio-oil, three model compounds were chosen to represent those components. Guaiacol represents the large number of mono- and dimethoxy phenols found in bio-oil derived from soft- or hardwood, respectively. Furfural represents a major pyrolysis product group from cellulosics. Acetic acid is a major product from biomass pyrolysis, derived from the hemicellulose, which has important impacts on the further processing of the bio-oil because of its acidic character. These three compounds were processed using a palladium or ruthenium catalyst over a temperature range from 150 to 300 °C. The batch reactor was sampled during each te...

361 citations

Journal ArticleDOI
TL;DR: A comprehensive understanding of radiation effects in zircon, ZrSiO4, over a broad range of time scales (0.5 h to 570 million years) has been obtained by a study of natural ZIRcon, Pu-doped Zircon and ion-beam irradiated Zrcon as discussed by the authors.
Abstract: A comprehensive understanding of radiation effects in zircon, ZrSiO4, over a broad range of time scales (0.5 h to 570 million years) has been obtained by a study of natural zircon, Pu-doped zircon, and ion-beam irradiated zircon. Radiation damage in zircon results in the simultaneous accumulation of both point defects and amorphous regions. The amorphization process is consistent with models based on the multiple overlap of particle tracks, suggesting that amorphization occurs as a result of a critical defect concentration. The amorphization dose increases with temperature in two stages (below 300 K and above 473 K) and is nearly independent of the damage source (α-decay events or heavy-ion beams) at 300 K. Recrystallization of completely amorphous zircon occurs above 1300 K and is a two-step process that involves the initial formation of pseudo-cubic ZrO2.

361 citations

01 Dec 2011
TL;DR: In this article, the convergence of molecular engineering and genomic discovery for the utilization and understanding of light-activated ion channels and pumps has been explored, and a group of microbial opsins bridging prior categories is described.
Abstract: The capture and utilization of light is an exquisitely evolved process. The single-component microbial opsins, although more limited than multicomponent cascades in processing, display unparalleled compactness and speed. Recent advances in understanding microbial opsins have been driven by molecular engineering for optogenetics and by comparative genomics. Here we provide a Primer on these light-activated ion channels and pumps, describe a group of opsins bridging prior categories, and explore the convergence of molecular engineering and genomic discovery for the utilization and understanding of these remarkable molecular machines.

360 citations

Journal ArticleDOI
TL;DR: The new model is able to produce results of similar quality with the previous versions for the structures and energetics of water clusters as well as structural and thermodynamic properties of liquid water evaluated with classical and converged quantum statistical mechanical atomistic simulations.
Abstract: We present a new parametrization of the flexible, polarizable Thole-type model for water [J. Chem. Phys. 116, 5115 (2002); J. Phys. Chem. A 110, 4100 (2006)], with emphasis in describing the vibrational spectra of both water clusters and liquid water. The new model is able to produce results of similar quality with the previous versions for the structures and energetics of water clusters as well as structural and thermodynamic properties of liquid water evaluated with classical and converged quantum statistical mechanical atomistic simulations. At the same time it yields accurate redshifts for the OH vibrational stretches of both water clusters and liquid water.

360 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view is presented, focusing on addressing the fundamental problems of lithium and manganese-rich (LMR) cathodes while keeping practical considerations in mind.
Abstract: The lithium- and manganese-rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg−1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full-cell operation are systematically analyzed. These factors include the first-cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind.

359 citations


Authors

Showing all 11848 results

NameH-indexPapersCitations
Yi Cui2201015199725
Derek R. Lovley16858295315
Xiaoyuan Chen14999489870
Richard D. Smith140118079758
Taeghwan Hyeon13956375814
Jun Liu13861677099
Federico Capasso134118976957
Jillian F. Banfield12756260687
Mary M. Horowitz12755756539
Frederick R. Appelbaum12767766632
Matthew Jones125116196909
Rainer Storb12390558780
Zhifeng Ren12269571212
Wei Chen122194689460
Thomas E. Mallouk12254952593
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Tsinghua University
200.5K papers, 4.5M citations

90% related

Pennsylvania State University
196.8K papers, 8.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023130
2022459
20211,794
20201,795
20191,598
20181,619