scispace - formally typeset
Search or ask a question
Institution

Pacific Northwest National Laboratory

FacilityRichland, Washington, United States
About: Pacific Northwest National Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Catalysis & Aerosol. The organization has 11581 authors who have published 27934 publications receiving 1120489 citations. The organization is also known as: PNL & PNNL.
Topics: Catalysis, Aerosol, Mass spectrometry, Ion, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: This two-step process avoids the intermolecular conjugation of proteins, and guarantees the uniform attachment of proteins on carbon nanotubes, providing a universal and efficient method to attach biomolecules to carbon Nanotubes at ambient conditions.
Abstract: Ferritin and bovine serum albumin (BSA) proteins are chemically bonded to nitrogen-doped multi-walled carbon nanotubes (CNx MWNTs) through a two-step process of diimide-activated amidation. First, carboxylated CNx MWNTs were activated by N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDAC), forming a stable active ester in the presence of N-hydroxysuccinimide (NHS). Second, the active ester was reacted with the amine groups on the proteins of ferritin or BSA, forming an amide bond between the CNx MWNTs and proteins. This two-step process avoids the intermolecular conjugation of proteins, and guarantees the uniform attachment of proteins on carbon nanotubes. TEM and AFM measurements clearly confirmed the successful attachment. This approach provides a universal and efficient method to attach biomolecules to carbon nanotubes at ambient conditions.

352 citations

Journal ArticleDOI
TL;DR: In this article, a cost model for vanadium and iron-vanadium redox flow batteries is developed to estimate stack performance at various power densities as a function of state of charge and operating conditions.

351 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data.
Abstract: . Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between τa and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and τa as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–τa relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between τa and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR–τa relationship show a strong positive correlation between τa and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of τa, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5 Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic τa and satellite-retrieved Nd–τa regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2 Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5 Wm−2, with a total estimate of −1.2±0.4 Wm−2.

350 citations

Journal ArticleDOI
TL;DR: The calculated structural properties of the wurtzite and rocksalt phases are in good agreement with experiment, indicating that the Hartree-Fock linear-combination-of-atomic-orbitals method can reliably predict quite small energy differences between different densities or crystal structures of a nonmetallic solid.
Abstract: The total energy of ZnO as a function of unit cell volume has been calculated for the zinc-blende, wurtzite, and rocksalt structures by the ab initio all-electron periodic Hartree-Fock linear-combination-of-atomic-orbitals method using a large Gaussian basis set that was variationally optimized for the solid state. Extensive convergence tests with respect to cutoffs of the real-space Coulomb and exchange series were carried out to ensure that the calculations were performed with sufficient precision. The calculated structural properties (equilibrium lattice constant, bulk modulus, etc.) of the wurtzite and rocksalt phases are in good agreement with experiment, as is the transition pressure between them (8.57 GPa versus 9--9.5 GPa experimentally), indicating that the method can reliably predict quite small energy differences between different densities or crystal structures of a nonmetallic solid. The calculated valence-band structure was also in satisfactory agreement with experiment. Detailed analysis of the charge-density distribution supports the expected picture of a transition from mixed ionic-covalent bonding in the tetrahedrally coordinated structures to predominantly ionic bonding in the high-pressure phase.

349 citations

Journal ArticleDOI
TL;DR: In this paper, the viscosity of the water-soluble component of secondary organic material (SOM) produced by α-pinene ozonolysis is quantified for 20- to 50-μm particles at 293-295 K.
Abstract: Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a “bead-mobility” technique and a “poke-flow” technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by α-pinene ozonolysis is quantified for 20- to 50-μm particles at 293–295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ≤30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ≤ 30%; (ii) at ≤30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate.

349 citations


Authors

Showing all 11848 results

NameH-indexPapersCitations
Yi Cui2201015199725
Derek R. Lovley16858295315
Xiaoyuan Chen14999489870
Richard D. Smith140118079758
Taeghwan Hyeon13956375814
Jun Liu13861677099
Federico Capasso134118976957
Jillian F. Banfield12756260687
Mary M. Horowitz12755756539
Frederick R. Appelbaum12767766632
Matthew Jones125116196909
Rainer Storb12390558780
Zhifeng Ren12269571212
Wei Chen122194689460
Thomas E. Mallouk12254952593
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Tsinghua University
200.5K papers, 4.5M citations

90% related

Pennsylvania State University
196.8K papers, 8.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023130
2022459
20211,794
20201,795
20191,598
20181,619