scispace - formally typeset
Search or ask a question
Institution

Pacific Northwest National Laboratory

FacilityRichland, Washington, United States
About: Pacific Northwest National Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Catalysis & Aerosol. The organization has 11581 authors who have published 27934 publications receiving 1120489 citations. The organization is also known as: PNL & PNNL.
Topics: Catalysis, Aerosol, Mass spectrometry, Ion, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports, and the addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated Palladium atoms.
Abstract: Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the γ-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 °C. The catalyst activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts.

487 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured an increase in CO2 production from soils after biochar amendment which increased with increasing rates of biochar, confirming that biochar contributed to the CO2 flux.
Abstract: The low temperature pyrolysis of organic material produces biochar, a charcoal like substance. Biochar is being promoted as a soil amendment to enhance soil quality, it is also seen as a mechanism of long-term sequestration of carbon. Our experiments tested the hypothesis that biochar is inert in soil. However, we measured an increase in CO2 production from soils after biochar amendment which increased with increasing rates of biochar. The ∂13C signature of the CO2 evolved in the first several days of the incubation was the same as the ∂13C signature of the biochar, confirming that biochar contributed to the CO2 flux. This effect diminished by day 6 of the incubation suggesting that most of the biochar C is slowly decomposing. Thus, aside from this short-term mineralization increasing soil C with young biochar may indeed be a long-term C storage mechanism.

486 citations

Journal ArticleDOI
TL;DR: In this paper, a MoS2/PEO/graphene composite is successfully prepared and the discharge mechanism of MoS 2 as anode material for Li-ion batteries has been investigated systematically.
Abstract: MoS2/PEO/graphene composite is successfully prepared and the discharge mechanism of MoS2 as an anode material for Li-ion batteries has been investigated systematically in this work The simultaneous formation of Li2S and Mo at deep discharge depth has been shown for the first time The deposition of Mo metal with Li residing on the defects after the first discharge increases the intrinsic electronic conductivity of the electrode leading to a superior cycling stability for over 185 cycles After the first discharge the amorphous Mo matrix allows a large amount of Li+ ions to repeatedly deposit and being oxidized during cycling while the transition between Li2S and S contribute to the capacity above 20 V The interactions between as-formed Mo and S prevents the dissolution of the intermediate polysulfide thus providing clues to immobilize the soluble species in a Li-S battery Excellent rate performances are achieved in this MoS2/PEO/graphene composite indicating a fast diffusion path of Li+ ions existing not only in the bulk material but also in the interface between the electrode and the electrolyte

484 citations

Journal ArticleDOI
TL;DR: In this paper, the status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed, including electrolytes, cathode (electrocatalysts), lithium metal anodes and oxygen-selective membranes (oxygen supply from air).
Abstract: A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries and, thus, enable the driving range of an electric vehicle to be comparable to gasoline vehicles. However, making Li-air batteries rechargeable presents significant challenges, mostly related to the materials. Here, the key factors that influence the rechargeability of Li-air batteries are discussed with a focus on nonaqueous systems. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electrocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). A perspective for the future of rechargeable Li-air batteries is provided.

484 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the sorption of seven divalent metals (Ba, Sr, Cd, Mn, Zn, Co, and Ni) on calcite over a large initial metal (Me) concentration range (10−8 to 10−4 mol/L) in constant ionic strength (I = 0.1), equilibrium CaCO3(s)-CaCO3 (aq) suspensions that varied in pH.

483 citations


Authors

Showing all 11848 results

NameH-indexPapersCitations
Yi Cui2201015199725
Derek R. Lovley16858295315
Xiaoyuan Chen14999489870
Richard D. Smith140118079758
Taeghwan Hyeon13956375814
Jun Liu13861677099
Federico Capasso134118976957
Jillian F. Banfield12756260687
Mary M. Horowitz12755756539
Frederick R. Appelbaum12767766632
Matthew Jones125116196909
Rainer Storb12390558780
Zhifeng Ren12269571212
Wei Chen122194689460
Thomas E. Mallouk12254952593
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Tsinghua University
200.5K papers, 4.5M citations

90% related

Pennsylvania State University
196.8K papers, 8.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023130
2022459
20211,794
20201,795
20191,598
20181,619