scispace - formally typeset
Search or ask a question
Institution

Pacific Northwest National Laboratory

FacilityRichland, Washington, United States
About: Pacific Northwest National Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Catalysis & Aerosol. The organization has 11581 authors who have published 27934 publications receiving 1120489 citations. The organization is also known as: PNL & PNNL.
Topics: Catalysis, Aerosol, Mass spectrometry, Ion, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, structural characteristics and Li-electrochemical reactivity, along with synthetic approaches, of nanostructures and nano-composites based on lithium titanites are reviewed.

815 citations

Journal ArticleDOI
TL;DR: Exposure to SiO(2) nanoparticles results in a dose-dependent cytotoxicity in cultural human bronchoalveolar carcinoma-derived cells that is closely correlated to increased oxidative stress.

812 citations

Journal ArticleDOI
TL;DR: The electrochemically reduced graphene oxide (ER-G) has shown promising features for applications in energy storage, biosensors, and electrocatalysis as discussed by the authors, which can be used for energy storage.
Abstract: Graphene oxide is electrochemically reduced which is called electrochemically reduced graphene oxide (ER-G). ER-G is characterized with scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The oxygen content is significantly decreased and the sp2 carbon is restored after electrochemical reduction. ER-G exhibits much higher electrochemical capacitance and cycling durability than carbon nanotubes (CNTs) and chemically reduced graphene; the specific capacitance measured with cyclic voltammetry (20 mV s−1) is ∼165, ∼86, and ∼100 F g−1 for ER-G, CNTs, and chemically reduced graphene, respectively. The electrochemical reduction of oxygen and hydrogen peroxide are greatly enhanced on ER-G electrodes as compared with CNTs. ER-G has shown promising features for applications in energy storage, biosensors, and electrocatalysis.

803 citations

Journal ArticleDOI
TL;DR: This study has performed the most extensive analysis of serum proteins to date and laid the foundation for future refinements in the identification of novel protein biomarkers of disease.

798 citations

Journal ArticleDOI
TL;DR: Recently reported approaches to improve the enzyme stability in various nanostructures such as nanoparticles, nanofibers, mesoporous materials, and single enzyme nanoparticles (SENs) are reviewed.

796 citations


Authors

Showing all 11848 results

NameH-indexPapersCitations
Yi Cui2201015199725
Derek R. Lovley16858295315
Xiaoyuan Chen14999489870
Richard D. Smith140118079758
Taeghwan Hyeon13956375814
Jun Liu13861677099
Federico Capasso134118976957
Jillian F. Banfield12756260687
Mary M. Horowitz12755756539
Frederick R. Appelbaum12767766632
Matthew Jones125116196909
Rainer Storb12390558780
Zhifeng Ren12269571212
Wei Chen122194689460
Thomas E. Mallouk12254952593
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Tsinghua University
200.5K papers, 4.5M citations

90% related

Pennsylvania State University
196.8K papers, 8.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023130
2022459
20211,794
20201,795
20191,598
20181,619