scispace - formally typeset
Search or ask a question
Institution

Rensselaer Polytechnic Institute

EducationTroy, New York, United States
About: Rensselaer Polytechnic Institute is a education organization based out in Troy, New York, United States. It is known for research contribution in the topics: Terahertz radiation & Finite element method. The organization has 19024 authors who have published 39922 publications receiving 1414699 citations. The organization is also known as: RPI & Rensselaer Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple yet efficient extension of this concept to the source coding of images by specifying the constraints for a set of two-dimensional quadrature mirror filters for a particular frequency-domain partition and showing that these constraints are satisfied by a separable combination of one-dimensional QMF's.
Abstract: Subband coding has become quite popular for the source encoding of speech. This paper presents a simple yet efficient extension of this concept to the source coding of images. We specify the constraints for a set of two-dimensional quadrature mirror filters (QMF's) for a particular frequency-domain partition, and show that these constraints are satisfied by a separable combination of one-dimensional QMF's. Bits are then optimally allocated among the subbands to minimize the mean-squared error for DPCM coding of the subbands. Also, an adaptive technique is developed to allocate the bits within each subband by means of a local variance mask. Optimum quantization is employed with quantizers matched to the Laplacian distribution. Subband coded images are presented along with their signal-to-noise ratios (SNR's). The SNR performance of the subband coder is compared to that of the adaptive discrete cosine transform (DCT), vector quantization, and differential vector quantization for bit rates of 0.67, 1.0, and 2.0 bits per pixel for 256 × 256 monochrome images. The adaptive subband coder has the best SNR performance.

1,181 citations

Journal ArticleDOI
TL;DR: A framework is proposed for evaluating algorithms' ability to detect overlapping nodes, which helps to assess overdetection and underdetection, and for low overlapping density networks, SLPA, OSLOM, Game, and COPRA offer better performance than the other tested algorithms.
Abstract: This article reviews the state-of-the-art in overlapping community detection algorithms, quality measures, and benchmarks. A thorough comparison of different algorithms (a total of fourteen) is provided. In addition to community-level evaluation, we propose a framework for evaluating algorithms' ability to detect overlapping nodes, which helps to assess overdetection and underdetection. After considering community-level detection performance measured by normalized mutual information, the Omega index, and node-level detection performance measured by F-score, we reached the following conclusions. For low overlapping density networks, SLPA, OSLOM, Game, and COPRA offer better performance than the other tested algorithms. For networks with high overlapping density and high overlapping diversity, both SLPA and Game provide relatively stable performance. However, test results also suggest that the detection in such networks is still not yet fully resolved. A common feature observed by various algorithms in real-world networks is the relatively small fraction of overlapping nodes (typically less than 30p), each of which belongs to only 2 or 3 communities.

1,166 citations

Journal ArticleDOI
TL;DR: In this paper, the self-organization of the polymer in solar cells based on regioregular poly(3-hexylthiophene) (RR-P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) is studied systematically as a function of the spin-coating time.
Abstract: The self-organization of the polymer in solar cells based on regioregular poly(3-hexylthiophene) (RR-P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) is studied systematically as a function of the spin-coating time ts (varied from 20–80 s), which controls the solvent annealing time ta, the time taken by the solvent to dry after the spin-coating process. These blend films are characterized by photoluminescence spectroscopy, UV-vis absorption spectroscopy, atomic force microscopy, and grazing incidence X-ray diffraction (GIXRD) measurements. The results indicate that the π-conjugated structure of RR-P3HT in the films is optimally developed when ta is greater than 1 min (ts ∼ 50 s). For ts < 50 s, both the short-circuit current (JSC) and the power conversion efficiency (PCE) of the corresponding polymer solar cells show a plateau region, whereas for 50 < ts < 55 s, the JSC and PCE values are significantly decreased, suggesting that there is a major change in the ordering of the polymer in this time window. The PCE decreases from 3.6 % for a film with a highly ordered π-conjugated structure of RR-P3HT to 1.2 % for a less-ordered film. GIXRD results confirm the change in the ordering of the polymer. In particular, the incident photon-to-electron conversion efficiency spectrum of the less-ordered solar cell shows a clear loss in both the overall magnitude and the long-wavelength response. The solvent annealing effect is also studied for devices with different concentrations of PCBM (PCBM concentrations ranging from 25 to 67 wt %). Under “solvent annealing” conditions, the polymer is seen to be ordered even at 67 wt % PCBM loading. The open-circuit voltage (VOC) is also affected by the ordering of the polymer and the PCBM loading in the active layer.

1,165 citations

Journal ArticleDOI
TL;DR: This work combines the autoencoder, deconvolution network, and shortcut connections into the residual encoder–decoder convolutional neural network (RED-CNN) for low-dose CT imaging and achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases.
Abstract: Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data, whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder–decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases. Especially, our method has been favorably evaluated in terms of noise suppression, structural preservation, and lesion detection.

1,161 citations

Journal ArticleDOI
TL;DR: An "in-plane" fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide to provide a prototype for a broad range of thin-film based energy storage devices.
Abstract: With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an “in-plane” fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1−2 graphene layers, to reach specific capacities up to 80 μFcm−2, while much higher (394 μFcm−2) specific capacities are observed multilayer reduced graphene oxide electrodes. The performances of devices with pristine as well as thicker graphene-based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad ran...

1,149 citations


Authors

Showing all 19133 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Zhenan Bao169865106571
Murray F. Brennan16192597087
Ashok Kumar1515654164086
Joseph R. Ecker14838194860
Bruce E. Logan14059177351
Shih-Fu Chang13091772346
Michael G. Rossmann12159453409
Richard P. Van Duyne11640979671
Michael Lynch11242263461
Angel Rubio11093052731
Alan Campbell10968753463
Boris I. Yakobson10744345174
O. C. Zienkiewicz10745571204
John R. Reynolds10560750027
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Purdue University
163.5K papers, 5.7M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022177
20211,118
20201,356
20191,328
20181,245