scispace - formally typeset
Search or ask a question
Institution

Rensselaer Polytechnic Institute

EducationTroy, New York, United States
About: Rensselaer Polytechnic Institute is a education organization based out in Troy, New York, United States. It is known for research contribution in the topics: Terahertz radiation & Finite element method. The organization has 19024 authors who have published 39922 publications receiving 1414699 citations. The organization is also known as: RPI & Rensselaer Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, two potential mediators of such effects (entrepreneurs' success in obtaining information and essential resources) were investigated, and data were collected in a culture not included in previous studies (China).

276 citations

Journal ArticleDOI
TL;DR: A review of the current understanding of the mechanics of random fiber networks, for which the governing functional is the system enthalpy, as well as to molecular networks, in which thermal fluctuations are important.
Abstract: This article presents a review of the current understanding of the mechanics of random fiber networks. The discussion refers to athermal fiber networks, for which the governing functional is the system enthalpy, as well as to molecular networks, in which thermal fluctuations are important. Fiber networks are broadly encountered in everyday life as paper, insulation and damping materials, and as the essential component of some consumer products, while molecular networks form the structure of biological and non-biological materials such as the cytoskeleton, connective tissue, gels and rubber. The mechanics of these materials is defined by the structure of the network and by the mechanical behavior of individual filaments. The structure is characterized by a number of parameters, such as the density, filament orientation, fiber waviness, density and nature of cross-links, which are discussed in the first part of the article. The constitutive behavior of individual filaments is defined by their bending and axial stiffness, and by the response to thermal fluctuations. The constitutive response of the cross-links plays a central role in defining the system-scale mechanical behavior. The analysis of the network mechanics is divided into two parts addressing cross-linked and entangled (non-cross-linked) networks. Both molecular and athermal cross-linked networks are discussed, while only the literature on athermal entangled networks is included. Flexible and semi-flexible fibers are considered, with special attention given to the second category. The constitutive behavior under small and large deformations, including attempts to define continuum representations of the discrete system, is reviewed. A number of open issues are discussed in closure.

275 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review materials growth, device physics, design, fabrication, and performance of DUV LEDs with wavelength ranging from 210 to 365 nm and describe prototype systems for water purification and sterilization.
Abstract: Compact solid-state deep-ultraviolet (DUV) light-emitting diodes (LEDs) go far beyond replacing conventional DUV sources such as mercury lamps. DUV LEDs enable new applications for air, water, and surface sterilization and decontamination, bioagent detection and identification, UV curing, and biomedical and analytical instrumentation. We review materials growth, device physics, design, fabrication, and performance of DUV LEDs with wavelength ranging from 210 to 365 nm, describe prototype systems for water purification and sterilization, and discuss other emerging applications and systems using DUV LEDs.

275 citations

Journal ArticleDOI
TL;DR: In this paper, laser and infrared reflow soldering methods were used to make Sn-Ag eutectic solder joints for surface-mount components on printed wiring boards, and the microstructures of the joints were evaluated and related to process parameters.
Abstract: Laser and infrared reflow soldering methods were used to make Sn-Ag eutectic solder joints for surface-mount components on printed wiring boards. The microstructures of the joints were evaluated and related to process parameters. Aging tests were conducted on these joints for times up to 300 days and at temperature up to 190°C. The evolution of microstructure during aging was examined. The results showed that Sn-Ag solder microstructure is unstable at high temperature, and microstructural evolution can cause solder joint failure. Cu-Sn intermetallics in the solder and at copper-solder interfaces played an important role in both the microstructure evolution and failure of solder joints. Void and crack formation in the aged joints was also observed.

275 citations

Journal ArticleDOI
TL;DR: An approach for prescribing lumped parameter outflow boundary conditions that accommodate transient phenomena is presented and applied to compute haemodynamic quantities in different physiologically relevant cardiovascular models to study non-periodic flow phenomena often observed in normal subjects and in patients with acquired or congenital cardiovascular disease.
Abstract: The simulation of blood flow and pressure in arteries requires outflow boundary conditions that incorporate models of downstream domains. We previously described a coupled multidomain method to couple analytical models of the downstream domains with 3D numerical models of the upstream vasculature. This prior work either included pure resistance boundary conditions or impedance boundary conditions based on assumed periodicity of the solution. However, flow and pressure in arteries are not necessarily periodic in time due to heart rate variability, respiration, complex transitional flow or acute physiological changes. We present herein an approach for prescribing lumped parameter outflow boundary conditions that accommodate transient phenomena. We have applied this method to compute haemodynamic quantities in different physiologically relevant cardiovascular models, including patient-specific examples, to study non-periodic flow phenomena often observed in normal subjects and in patients with acquired or congenital cardiovascular disease. The relevance of using boundary conditions that accommodate transient phenomena compared with boundary conditions that assume periodicity of the solution is discussed.

275 citations


Authors

Showing all 19133 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Zhenan Bao169865106571
Murray F. Brennan16192597087
Ashok Kumar1515654164086
Joseph R. Ecker14838194860
Bruce E. Logan14059177351
Shih-Fu Chang13091772346
Michael G. Rossmann12159453409
Richard P. Van Duyne11640979671
Michael Lynch11242263461
Angel Rubio11093052731
Alan Campbell10968753463
Boris I. Yakobson10744345174
O. C. Zienkiewicz10745571204
John R. Reynolds10560750027
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Purdue University
163.5K papers, 5.7M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022177
20211,118
20201,356
20191,328
20181,245