scispace - formally typeset
Search or ask a question
Institution

Torrey Pines Institute for Molecular Studies

NonprofitSan Diego, California, United States
About: Torrey Pines Institute for Molecular Studies is a nonprofit organization based out in San Diego, California, United States. It is known for research contribution in the topics: Antigen & T cell. The organization has 2323 authors who have published 2217 publications receiving 112618 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that the peptide scaffold presenting TF antigen could be relevant for binding and thus provides a possible route for the design of galectin-3 inhibitors with improved affinity and selectivity.
Abstract: Nuclear magnetic resonance (NMR) spectroscopy and molecular modeling methods have been strategically combined to elucidate the molecular recognition features of the binding of threonine O-linked Thomsen-Friedenreich (TF) antigen to chimera-type avian galectin-3 (CG-3). Saturation transfer difference (STD) NMR experiments revealed the highest intensities for the H4 protons of both the β-d-Galp and α-d-GalpNAc moieties, with 100 and 71% of relative STD, respectively. The methyl protons of the threonine residue exhibited a small STD effect, <15%, indicating that the interaction of the amino acid with the protein is rather transient. Two-dimensional transferred nuclear Overhauser effect spectroscopy NMR experiments and molecular modeling suggested some differences in conformer populations between the free and bound states. A dynamic binding mode for the TF antigen–CG-3 complex consisting of two poses has been deduced. In one pose, intermolecular interactions were formed between the terminal threonine residue ...

28 citations

Journal ArticleDOI
TL;DR: Screening of a second set of libraries containing somewhat larger and more symmetrical scaffolds in an effort to mimic the symmetry of a WRWYCR homodimer and its target identified several pyrrolidine bis-cyclic guanidine inhibitors that also interfere with processing of HJs in vitro and are potent inhibitors of Gram-negative and especially Gram-positive bacterial growth.
Abstract: Holliday junctions (HJs) are critical intermediates in many recombination-dependent DNA repair pathways. Our lab has previously identified several hexameric peptides that target HJ intermediates formed in DNA recombination reactions. One of the most potent peptides, WRWYCR, is active as a homodimer and has shown bactericidal activity partly because of its ability to interfere with DNA repair proteins that act upon HJs. To increase the possibility of developing a therapeutic targeting DNA repair, we searched for small molecule inhibitors that were functional surrogates of the peptides. Initial screens of heterocyclic small molecule libraries resulted in the identification of several N-methyl aminocyclic thiourea inhibitors. Like the peptides, these inhibitors trapped HJs formed during recombination reactions in vitro, but were less potent than the peptides in biochemical assays and had little antibacterial activity. In this study, we describe the screening of a second set of libraries containing somewhat larger and more symmetrical scaffolds in an effort to mimic the symmetry of a WRWYCR homodimer and its target. From this screen, we identified several pyrrolidine bis-cyclic guanidine inhibitors that also interfere with processing of HJs in vitro and are potent inhibitors of Gram-negative and especially Gram-positive bacterial growth. These molecules are proof-of-principle of a class of compounds with novel activities, which may in the future be developed into a new class of antibiotics that will expand the available choices for therapy against drug-resistant bacteria.

28 citations

Book ChapterDOI
TL;DR: Recent advances in understanding of the role of HA in regulating mesenchymal stem cells, osteoblasts, fibroblasts, macrophages, and endothelium in bone marrow and their crosstalk within the hematopoietic microenvironment are summarized.
Abstract: The fate of both endogenous and transplanted stem cells is dependent on the functional status of the regulatory local microenvironment, which is compromised by disease and therapeutic intervention. The glycosaminoglycan hyaluronan (HA) is a critical component of the hematopoietic microenvironment. We summarize recent advances in our understanding of the role of HA in regulating mesenchymal stem cells, osteoblasts, fibroblasts, macrophages, and endothelium in bone marrow (BM) and their crosstalk within the hematopoietic microenvironment. HA not only determines the volume, hydration, and microfluidics of the BM interstitial space, but also, via interactions with specific receptors, regulates multiple cell functions including differentiation, migration, and production of regulatory factors. The effects of HA are dependent on the polymer size and are influenced by the formation of complexes with other molecules. In healthy BM, HA synthases and hyaluronidases form a molecular network that maintains extracellular HA levels within a discrete physiological window, but HA homeostasis is often perturbed in pathological conditions, including hematological malignancies. Recent studies have suggested that HA synthases may have functions beyond HA production and contribute to the intracellular regulatory machinery. We discuss a possible role for HA synthases, intracellular and extracellular HA in the malignant BM microenvironment, and resistance to therapy.

28 citations

Journal ArticleDOI
TL;DR: This model was used to predict the temperature history of wild age-1 sardine collected in the SCB from 1995 to 2003 and generally fit the model of SCB residency when both the average coastal sea surface temperatures and temperatures at 30 m were used to bracket the range of calculated otolith temperatures.

28 citations

Journal ArticleDOI
TL;DR: Results indicate that a history of nicotine dependence affects subsequent nicotine- but not alcohol-maintained responding, and that NOP receptor antagonism, rather than agonism, blocks nicotine self-administration, which strongly suggests a critical role for the endogenous N/OFQ in the modulation of nicotine reinforcement processes.
Abstract: Alcohol and nicotine are often co-abused. Although the N/OFQ-NOP receptor system is considered a potential target for development of drug abuse pharmacotherapies, especially for alcoholism, little is known about the role of this system in nicotine dependence. Furthermore, the effect of prior history of nicotine dependence on subsequent nicotine and alcohol taking is understudied. Using an operant co-administration paradigm, in which rats concurrently self-administer nicotine and alcohol, we found that nicotine dependent rats increased nicotine self-administration over time as compared to non-dependent animals, while patterns of alcohol lever pressing did not change between groups. Pretreatment with the potent NOP receptor agonist AT-202 (0.3–3 mg/kg) increased nicotine lever pressing of both dependent and non-dependent groups, whereas the selective antagonist SB612111 (1–10 mg/kg) elicited a clear reduction of nicotine responses, in both dependent and non-dependent rats. In parallel, AT-202 only produced minor changes on alcohol responses and SB612111 reduced alcohol taking at a dose that also reduced locomotor behavior. Results indicate that a history of nicotine dependence affects subsequent nicotine- but not alcohol-maintained responding and that NOP receptor antagonism, rather than agonism, blocks nicotine self-administration, which strongly suggests a critical role for the endogenous N/OFQ in the modulation of nicotine reinforcement processes.

28 citations


Authors

Showing all 2327 results

NameH-indexPapersCitations
Eric J. Topol1931373151025
John R. Yates1771036129029
George F. Koob171935112521
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Gerald M. Edelman14754569091
Floyd E. Bloom13961672641
Stuart A. Lipton13448871297
Benjamin F. Cravatt13166661932
Chi-Huey Wong129122066349
Klaus Ley12949557964
Nicholas J. Schork12558762131
Michael Andreeff11795954734
Susan L. McElroy11757044992
Peter E. Wright11544455388
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Novartis
50.5K papers, 1.9M citations

92% related

Genentech
17.1K papers, 1.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202210
202153
202060
201950
201842