scispace - formally typeset
Search or ask a question
Institution

Torrey Pines Institute for Molecular Studies

NonprofitSan Diego, California, United States
About: Torrey Pines Institute for Molecular Studies is a nonprofit organization based out in San Diego, California, United States. It is known for research contribution in the topics: Antigen & T cell. The organization has 2323 authors who have published 2217 publications receiving 112618 citations.


Papers
More filters
Journal ArticleDOI
27 Feb 2014-Nature
TL;DR: A powerful method for identifying genetic loci that influence protein expression in the yeast Saccharomyces cerevisiae is introduced through the use of green fluorescent protein tags in very large populations of genetically variable cells, and pooled sequencing is used to compare allele frequencies across the genome in thousands of individuals with high versus low protein abundance.
Abstract: Variation among individuals arises in part from differences in DNA sequences, but the genetic basis for variation in most traits, including common diseases, remains only partly understood. Many DNA variants influence phenotypes by altering the expression level of one or several genes. The effects of such variants can be detected as expression quantitative trait loci (eQTL). Traditional eQTL mapping requires large-scale genotype and gene expression data for each individual in the study sample, which limits sample sizes to hundreds of individuals in both humans and model organisms and reduces statistical power. Consequently, many eQTL are probably missed, especially those with smaller effects. Furthermore, most studies use messenger RNA rather than protein abundance as the measure of gene expression. Studies that have used mass-spectrometry proteomics reported unexpected differences between eQTL and protein QTL (pQTL) for the same genes, but these studies have been even more limited in scope. Here we introduce a powerful method for identifying genetic loci that influence protein expression in the yeast Saccharomyces cerevisiae. We measure single-cell protein abundance through the use of green fluorescent protein tags in very large populations of genetically variable cells, and use pooled sequencing to compare allele frequencies across the genome in thousands of individuals with high versus low protein abundance. We applied this method to 160 genes and detected many more loci per gene than previous studies. We also observed closer correspondence between loci that influence protein abundance and loci that influence mRNA abundance of a given gene. Most loci that we detected were clustered in 'hotspots' that influence multiple proteins, and some hotspots were found to influence more than half of the proteins that we examined. The variants that underlie these hotspots have profound effects on the gene regulatory network and provide insights into genetic variation in cell physiology between yeast strains.

141 citations

Journal ArticleDOI
17 Jul 2003-Neuron
TL;DR: It is concluded that neutralization of the negative charge at D232 by coordination of a calcium ion is necessary--but not sufficient--for fast neurotransmission at mammalian CNS synapses.

140 citations

Journal ArticleDOI
TL;DR: HLA-A2 patients achieved a meaningful therapeutic benefit with ICT-107, in both the MGMT methylated and unmethylated prespecified subgroups, whereas only Hla-A1 methylated patients had an OS benefit.
Abstract: Purpose: To evaluate the results of the randomized, double-blind, placebo-controlled phase II clinical trial of ICT-107 in patients with newly diagnosed glioblastoma. Patients and Methods: We conducted a double-blinded randomized phase II trial of ICT-107 in newly diagnosed patients with glioblastoma (GBM) and tested efficacy, safety, quality of life (QoL), and immune response. HLA-A1+ and/or -A2+–resected patients with residual tumor ≤1 cm3 received radiotherapy and concurrent temozolomide. Following completion of radiotherapy, 124 patients, randomized 2:1, received ICT-107 [autologous dendritic cells (DC) pulsed with six synthetic peptide epitopes targeting GBM tumor/stem cell–associated antigens MAGE-1, HER-2, AIM-2, TRP-2, gp100, and IL13Rα2] or matching control (unpulsed DC). Patients received induction ICT-107 or control weekly × 4 followed by 12 months of adjuvant temozolomide. Maintenance vaccinations occurred at 1, 3, and 6 months and every 6 months thereafter. Results: ICT-107 was well tolerated, with no difference in adverse events between the treatment and control groups. The primary endpoint, median overall survival (OS), favored ICT-107 by 2.0 months in the intent-to-treat (ITT) population but was not statistically significant. Progression-free survival (PFS) in the ITT population was significantly increased in the ICT-107 cohort by 2.2 months (P = 0.011). The frequency of HLA-A2 primary tumor antigen expression was higher than that for HLA-A1 patients, and HLA-A2 patients had higher immune response (via Elispot). HLA-A2 patients achieved a meaningful therapeutic benefit with ICT-107, in both the MGMT methylated and unmethylated prespecified subgroups, whereas only HLA-A1 methylated patients had an OS benefit. Conclusions: PFS was significantly improved in ICT-107–treated patients with maintenance of QoL. Patients in the HLA-A2 subgroup showed increased ICT-107 activity clinically and immunologically.

139 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a bifunctional small molecule "switch" consisting of folate conjugated to fluorescein isothiocyanate (folate-FITC) can redirect and regulate FITC-specific CAR-T cell activity toward folate receptor (FR)-overexpressing tumor cells.
Abstract: Chimeric antigen receptor (CAR)-engineered T cells (CAR-Ts) provide a potent antitumor response and have become a promising treatment option for cancer. However, despite their efficacy, CAR-T cells are associated with significant safety challenges related to the inability to control their activation and expansion and terminate their response. Herein, we demonstrate that a bifunctional small molecule “switch” consisting of folate conjugated to fluorescein isothiocyanate (folate-FITC) can redirect and regulate FITC-specific CAR-T cell activity toward folate receptor (FR)-overexpressing tumor cells. This system was shown to be highly cytotoxic to FR-positive cells with no activity against FR-negative cells, demonstrating the specificity of redirection by folate-FITC. Anti-FITC-CAR-T cell activation and proliferation was strictly dependent on the presence of both folate-FITC and FR-positive cells and was dose titratable with folate-FITC switch. This novel treatment paradigm may ultimately lead to increased sa...

138 citations


Authors

Showing all 2327 results

NameH-indexPapersCitations
Eric J. Topol1931373151025
John R. Yates1771036129029
George F. Koob171935112521
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Gerald M. Edelman14754569091
Floyd E. Bloom13961672641
Stuart A. Lipton13448871297
Benjamin F. Cravatt13166661932
Chi-Huey Wong129122066349
Klaus Ley12949557964
Nicholas J. Schork12558762131
Michael Andreeff11795954734
Susan L. McElroy11757044992
Peter E. Wright11544455388
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Novartis
50.5K papers, 1.9M citations

92% related

Genentech
17.1K papers, 1.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202210
202153
202060
201950
201842