scispace - formally typeset
Search or ask a question
Institution

Torrey Pines Institute for Molecular Studies

NonprofitSan Diego, California, United States
About: Torrey Pines Institute for Molecular Studies is a nonprofit organization based out in San Diego, California, United States. It is known for research contribution in the topics: Antigen & T cell. The organization has 2323 authors who have published 2217 publications receiving 112618 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the BET protein Bdf1 is essential in C. albicans and that mutations inactivating its two BDs result in a loss of viability in vitro and decreased virulence in mice, which establishes BET inhibition as a promising antifungal therapeutic strategy and identifies BDF1 as an antIfungal drug target that can be selectively inhibited without antagonizing human BET function.
Abstract: Invasive fungal infections cause significant morbidity and mortality among immunocompromised individuals, posing an urgent need for new antifungal therapeutic strategies. Here we investigate a chromatin-interacting module, the bromodomain (BD) from the BET family of proteins, as a potential antifungal target in Candida albicans, a major human fungal pathogen. We show that the BET protein Bdf1 is essential in C. albicans and that mutations inactivating its two BDs result in a loss of viability in vitro and decreased virulence in mice. We report small-molecule compounds that inhibit C. albicans Bdf1 with high selectivity over human BDs. Crystal structures of the Bdf1 BDs reveal binding modes for these inhibitors that are sterically incompatible with the human BET-binding pockets. Furthermore, we report a dibenzothiazepinone compound that phenocopies the effects of a Bdf1 BD-inactivating mutation on C. albicans viability. These findings establish BET inhibition as a promising antifungal therapeutic strategy and identify Bdf1 as an antifungal drug target that can be selectively inhibited without antagonizing human BET function.

37 citations

Journal ArticleDOI
TL;DR: The preference of MMP-1 for type II collagen appears to be primarily based on the flexibility of the hydrolysis site of type III collagen compared with types I and II, and further characterization of exosite determinants that govern interactions of M MPs with collagenous substrates should aid the development of pharmacotherapeutics that target individual MMPs.

37 citations

Journal ArticleDOI
TL;DR: The studies suggest that ERPs are an electrophysiological assay suitable for the exploration of the effects of genetic manipulations on neurosensory processing in mice and parallel human studies, demonstrating that decrements in P300 amplitude can be associated with a genetic vulnerability to alcoholism/alcohol preference.

37 citations

Journal ArticleDOI
TL;DR: In this paper, an alcohol-directed, nickel-catalyzed three-component umpolung carboamination of unactivated alkenes with aryl/alkenylboronic esters and electrophilic aminating reagents is reported.
Abstract: An alcohol-directed, nickel-catalyzed three-component umpolung carboamination of unactivated alkenes with aryl/alkenylboronic esters and electrophilic aminating reagents is reported. This transformation is enabled by specifically tailored O-(2,6-dimethoxybenzoyl)hydroxylamine electrophiles that suppress competitive processes, including undesired β-hydride elimination and transesterification between the alcohol substrate and electrophile. The reaction delivers the desired 1,2-carboaminated products with generally high regio- and syn-diastereoselectivity and exhibits a broad scope of coupling partners and alkenes, including complex natural products. Various mechanistic experiments and analysis of the stereochemical outcome with a cyclic alkene substrate, as confirmed by X-ray crystallographic analysis, support alcohol-directed syn-insertion of an organonickel(I) species.

37 citations


Authors

Showing all 2327 results

NameH-indexPapersCitations
Eric J. Topol1931373151025
John R. Yates1771036129029
George F. Koob171935112521
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Gerald M. Edelman14754569091
Floyd E. Bloom13961672641
Stuart A. Lipton13448871297
Benjamin F. Cravatt13166661932
Chi-Huey Wong129122066349
Klaus Ley12949557964
Nicholas J. Schork12558762131
Michael Andreeff11795954734
Susan L. McElroy11757044992
Peter E. Wright11544455388
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Novartis
50.5K papers, 1.9M citations

92% related

Genentech
17.1K papers, 1.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202210
202153
202060
201950
201842