scispace - formally typeset
Search or ask a question
Institution

Universiti Teknologi Malaysia

EducationJohor Bahru, Malaysia
About: Universiti Teknologi Malaysia is a education organization based out in Johor Bahru, Malaysia. It is known for research contribution in the topics: Membrane & Adsorption. The organization has 21644 authors who have published 39500 publications receiving 520635 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an evaluation of stand-alone data mining models (i.e., reduced error pruning tree (REPT), M5P and instance-based learning (IBK)) and hybrid models, (e.g., bagging-M5P, random committee-REPT (RC)-REPT) and random subspace-rePT (RS-REpt)) for predicting suspended sediment loads (SSL) resulting from glacial melting at an Andean catchment in Chile has been conducted in this article.

129 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined how residents' personality, emotional solidarity, and community commitment impact perceptions of tourism, which ultimately explain support for tourism development, and found that sympathetic understanding and welcoming nature were the strongest factors influencing residents' attitudes towards tourism development while the effect was different among males and females with differing personality traits.

129 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported experimental measurements of the streaming potential coupling coefficient in sandstones saturated with NaCl-dominated artificial and natural brines up to 5.5 M (321.4 g L−1 of NaCl; electrical conductivity of 23 S m−1).
Abstract: We report experimental measurements of the streaming potential coupling coefficient in sandstones saturated with NaCl-dominated artificial and natural brines up to 5.5 M (321.4 g L−1 of NaCl; electrical conductivity of 23 S m−1). We find that the magnitude of the coupling coefficient decreases with increasing brine salinity, as observed in previous experimental studies and predicted by models of the electrical double layer. However, the magnitude of the coupling coefficient remains greater than zero up to the saturated brine salinity. The magnitude of the zeta potential we interpret from our measurements also decreases with increasing brine salinity in the low-salinity domain ( 0.4 M). We hypothesize that the constant value of zeta potential observed at high salinity reflects the maximum packing of counterions in the diffuse part of the electrical double layer. Our hypothesis predicts that the zeta potential becomes independent of brine salinity when the diffuse layer thickness is similar to the diameter of the hydrated counterion. This prediction is confirmed by our experimental data and also by published measurements on alumina in KCl brine. At high salinity (>0.4 M), values of the streaming potential coupling coefficient and the corresponding zeta potential are the same within experimental error regardless of sample mineralogy and texture and the composition of the brine.

129 citations

01 Jan 2013
TL;DR: In this article, a new technique was developed for microwave pyrolysis in which inert nitrogen gas was supplied from the top of the reactor, which solved the problem of bio-oil deposition onto the reactor walls.
Abstract: A new technique was developed for microwave pyrolysis in which inert nitrogen gas was supplied from the top of the reactor. It is established that by the use of this technique, the problem of bio-oil deposition onto the reactor walls was solved. The pyrolysis of oil palm shell (OPS) was conducted in a microwave oven using an activated carbon as microwave absorber. The temperature profiles, product yield, as well as the properties of the pyrolysis products were found to be effected by the amount of microwave absorber and the stirrer speed, which this fact can be used to control the product quality. It was found that increasing the amount of microwave absorber as well as the stirrer speed reduced the yield of bio-oil. An increase in microwave absorber percentage has the effect of increasing the amount of phenol present in the bio-oil with maximum of 84.76 area % phenol obtained at 75% microwave absorber at 100 rpm stirrer speed. The maximum bio-oil yield of 28 wt. % was obtained at 25% microwave absorber at 50 rpm stirrer speed. The maximum calorific value of the bio-char was found to be 29.5 MJ/kg obtained at 50% microwave absorber at 100 rpm stirrer speed. High calorific value of the biochar could be utilised as solid fuel in many heating applications. Furthermore, the GC-MS characterisation of the bio-oil shows that the constituents are mostly phenol and its derivatives which are valuable chemicals having a wide range of applications and the potential to be an alternative to their petroleum-derived counterparts.

129 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the current trends in the hydrothermal synthesis of zeolite, attention is paid to the utilization of natural resources and manufacturing wastes as raw materials to synthesize Zeolite.

129 citations


Authors

Showing all 21852 results

NameH-indexPapersCitations
Xin Li114277871389
Muhammad Imran94305351728
Ahmad Fauzi Ismail93135740853
Bin Tean Teh9247133359
Muhammad Farooq92134137533
M. A. Shah9258337099
Takeshi Matsuura8554026188
Peter Willett7647929037
Peter C. Searson7437421806
Ozgur Kisi7347819433
Imran Ali7230019878
S.M. Sapuan7071319175
Peter J. Fleming6652924395
Mohammad Jawaid6550319471
Muhammad Tahir65163623892
Network Information
Related Institutions (5)
Universiti Putra Malaysia
36.7K papers, 647.6K citations

93% related

National University of Malaysia
41.2K papers, 552.6K citations

93% related

Universiti Sains Malaysia
39.3K papers, 655.4K citations

92% related

University of Malaya
51.4K papers, 1M citations

90% related

King Fahd University of Petroleum and Minerals
24K papers, 443.8K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022347
20212,812
20203,003
20193,148
20182,980