scispace - formally typeset
Search or ask a question
Institution

University of Dundee

EducationDundee, United Kingdom
About: University of Dundee is a education organization based out in Dundee, United Kingdom. It is known for research contribution in the topics: Population & Protein kinase A. The organization has 19258 authors who have published 39640 publications receiving 1919433 citations. The organization is also known as: Universitas Dundensis & Dundee University.


Papers
More filters
Journal ArticleDOI
TL;DR: The structural information that is emerging on three human immunoglobulin classes and their FcRs is reviewed, including an understanding of the antibody conformational adjustments that are required to bring effector cell and target cell membranes sufficiently close for efficient killing and signal transduction to occur.
Abstract: Immunoglobulins couple the recognition of invading pathogens with the triggering of potent effector mechanisms for pathogen elimination. Different immunoglobulin classes trigger different effector mechanisms through interaction of immunoglobulin Fc regions with specific Fc receptors (FcRs) on immune cells. Here, we review the structural information that is emerging on three human immunoglobulin classes and their FcRs. New insights are provided, including an understanding of the antibody conformational adjustments that are required to bring effector cell and target cell membranes sufficiently close for efficient killing and signal transduction to occur. The results might also open up new possibilities for the design of therapeutic antibodies.

412 citations

Journal ArticleDOI
TL;DR: The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstreamautophagy pathway, and examples of potential ULK1-independent autophapy have emerged, indicating that under certain specific contexts, the ULK 1 complex might be dispensable for autophagic activation.
Abstract: The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstream autophagy pathway. Much progress has been made in the last few years in understanding the mechanisms by which the complex is regulated through protein-protein interactions and post-translational modifications, providing insights into how the cell modulates autophagy, particularly in response to nutrient status. However, how the ULK1 complex transduces upstream signals to the downstream central autophagy pathway is still unclear. Although the protein kinase activity of ULK1 is required for its autophagic function, its protein substrate(s) responsible for autophagy activation has not been identified. Furthermore, examples of potential ULK1-independent autophagy have emerged, indicating that under certain specific contexts, the ULK1 complex might be dispensable for autophagy activation. This raises the question of how the autophagic machinery is activated independent of the ULK1 complex and what are the biological functions of such noncanonical autophagy pathways.

411 citations

Journal ArticleDOI
TL;DR: An improvement in understanding of metformin’s molecular targets is likely to enable target-based identification of second-generation drugs with similar properties, a development that has been impossible up to now.
Abstract: Metformin is the first-line drug treatment for type 2 diabetes. Globally, over 100 million patients are prescribed this drug annually. Metformin was discovered before the era of target-based drug discovery and its molecular mechanism of action remains an area of vigorous diabetes research. An improvement in our understanding of metformin’s molecular targets is likely to enable target-based identification of second-generation drugs with similar properties, a development that has been impossible up to now. The notion that 5' AMP-activated protein kinase (AMPK) mediates the anti-hyperglycaemic action of metformin has recently been challenged by genetic loss-of-function studies, thrusting the AMPK-independent effects of the drug into the spotlight for the first time in more than a decade. Key AMPK-independent effects of the drug include the mitochondrial actions that have been known for many years and which are still thought to be the primary site of action of metformin. Coupled with recent evidence of AMPK-independent effects on the counter-regulatory hormone glucagon, new paradigms of AMPK-independent drug action are beginning to take shape. In this review we summarise the recent research developments on the molecular action of metformin.

411 citations

Journal ArticleDOI
TL;DR: It is suggested that p53 C-terminal lysine residues are the main sites of ubiquitin ligation, which target p53 for proteasome-mediated degradation.
Abstract: In normal cells, p53 is maintained at a low level by ubiquitin-mediated proteolysis, but after genotoxic insult this process is inhibited and p53 levels rise dramatically. Ubiquitination of p53 requires the ubiquitin-activating enzyme Ubc5 as a ubiquitin conjugation enzyme and Mdm2, which acts as a ubiquitin protein ligase. In addition to the N-terminal region, which is required for interaction with Mdm2, the C-terminal domain of p53 modulates the susceptibility of p53 to Mdm2-mediated degradation. To analyze the role of the C-terminal domain in p53 ubiquitination, we have generated p53 molecules containing single and multiple lysine-to-arginine changes between residues 370 and 386. Although wild-type (WT) and mutant molecules show similar subcellular distributions, the mutants display a higher transcriptional activity than WT p53. Simultaneous mutation of lysine residues 370, 372, 373, 381, 382, and 386 to arginine residues (6KR p53 mutant) generates a p53 molecule with potent transcriptional activity that is resistant to Mdm2-induced degradation and is refractory to Mdm2-mediated ubiquitination. In contrast to WT p53, transcriptional activity directed by the 6KR p53 mutant fails to be negatively regulated by Mdm2. Those differences are also manifest in HeLa cells which express the human papillomavirus E6 protein, suggesting that p53 C-terminal lysine residues are also implicated in E6-AP-mediated ubiquitination. These data suggest that p53 C-terminal lysine residues are the main sites of ubiquitin ligation, which target p53 for proteasome-mediated degradation.

411 citations

Journal ArticleDOI
TL;DR: In this article, a patch-clamp technique was used to investigate the characteristics of two types of sodium current (INa) recorded at room temperature from small diameter (13-25 microns) dorsal root ganglion (DRG) cells, isolated from adult rats and maintained overnight in culture.
Abstract: 1. The whole-cell patch-clamp technique was used to investigate the characteristics of two types of sodium current (INa) recorded at room temperature from small diameter (13-25 microns) dorsal root ganglion (DRG) cells, isolated from adult rats and maintained overnight in culture. 2. Sodium currents were isolated pharmacologically. Internal Cs+ and external tetraethylammonium (TEA) ions were used to suppress potassium currents. A combination of internal EGTA, internal F-, a low (10 microM) concentration of external Ca2+ and a relatively high (5 mM) concentration of internal and external Mg2+ was used to block calcium channels. The remaining voltage-dependent currents reversed direction at the calculated sodium equilibrium potential. Both the reversal potential and magnitude of the currents exhibited the expected dependence on the external sodium concentration. 3. INa subtypes were characterized initially in terms of their sensitivity to tetrodotoxin (TTX). TTX-sensitive (TTXs) currents were at least 97% suppressed by 0.1 microM TTX. TTX-resistant (TTXr) INa were recorded in the presence of 0.3 microM TTX and appeared to be reduced in amplitude by less than 50% in 75 microM TTX (n = 1). 4. As in earlier studies, the peak of the current-voltage relationship, the mid-point of the normalized conductance curve and the potential (Vh) at which the steady-state inactivation parameter (h infinity) was 0.5 were found to be significantly more depolarized for the TTXr INa (by ca 10, 14 and 37 mV respectively). There was little difference in the slope at the mid-point of the normalized conductance curves (the mean slope factors were 5.1 mV for the TTXs INa and 4.9 mV for the TTXr current) but the h infinity curves for TTXr currents were significantly steeper than those for TTXs currents (mean slope factors of 3.8 and 11.5 mV respectively). Both the time to peak and the decay time constant of the peak current recorded from a holding potential of -67 mV were more than a factor of three slower for the TTXr INa than for the TTXs current. 5. However, in direct contrast to the difference in activation and decay kinetics, 'slow' TTXr INa recovered from inactivation at -67mV, or reprimed, more than a factor of ten faster than 'fast' TTXs INa. 6. The differences apparent in both the repriming kinetics of TTXs and TTXr INa at -67 mV and the kinetics of the decay phase of the peak INa are shown to be explicable largely in terms of the voltage dependence of their respective inactivation systems.(ABSTRACT TRUNCATED AT 400 WORDS)

411 citations


Authors

Showing all 19404 results

NameH-indexPapersCitations
Matthias Mann221887230213
Mark I. McCarthy2001028187898
Stefan Schreiber1781233138528
Kenneth C. Anderson1781138126072
Masayuki Yamamoto1711576123028
Salvador Moncada164495138030
Jorge E. Cortes1632784124154
Andrew P. McMahon16241590650
Philip Cohen154555110856
Dirk Inzé14964774468
Andrew T. Hattersley146768106949
Antonio Lanzavecchia145408100065
Kim Nasmyth14229459231
David Price138168793535
Dario R. Alessi13635474753
Network Information
Related Institutions (5)
University of Edinburgh
151.6K papers, 6.6M citations

95% related

University College London
210.6K papers, 9.8M citations

95% related

University of Manchester
168K papers, 6.4M citations

94% related

Imperial College London
209.1K papers, 9.3M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202361
2022205
20211,653
20201,520
20191,473
20181,524