scispace - formally typeset
Search or ask a question

Showing papers by "University of Dundee published in 2018"


Journal ArticleDOI
James J. Lee1, Robbee Wedow2, Aysu Okbay3, Edward Kong4, Omeed Maghzian4, Meghan Zacher4, Tuan Anh Nguyen-Viet5, Peter Bowers4, Julia Sidorenko6, Julia Sidorenko7, Richard Karlsson Linnér3, Richard Karlsson Linnér8, Mark Alan Fontana9, Mark Alan Fontana5, Tushar Kundu5, Chanwook Lee4, Hui Li4, Ruoxi Li5, Rebecca Royer5, Pascal Timshel10, Pascal Timshel11, Raymond K. Walters4, Raymond K. Walters12, Emily A. Willoughby1, Loic Yengo6, Maris Alver7, Yanchun Bao13, David W. Clark14, Felix R. Day15, Nicholas A. Furlotte, Peter K. Joshi14, Peter K. Joshi16, Kathryn E. Kemper6, Aaron Kleinman, Claudia Langenberg15, Reedik Mägi7, Joey W. Trampush5, Shefali S. Verma17, Yang Wu6, Max Lam, Jing Hua Zhao15, Zhili Zheng18, Zhili Zheng6, Jason D. Boardman2, Harry Campbell14, Jeremy Freese19, Kathleen Mullan Harris20, Caroline Hayward14, Pamela Herd21, Pamela Herd13, Meena Kumari13, Todd Lencz22, Todd Lencz23, Jian'an Luan15, Anil K. Malhotra22, Anil K. Malhotra23, Andres Metspalu7, Lili Milani7, Ken K. Ong15, John R. B. Perry15, David J. Porteous14, Marylyn D. Ritchie17, Melissa C. Smart14, Blair H. Smith24, Joyce Y. Tung, Nicholas J. Wareham15, James F. Wilson14, Jonathan P. Beauchamp25, Dalton Conley26, Tõnu Esko7, Steven F. Lehrer27, Steven F. Lehrer28, Steven F. Lehrer29, Patrik K. E. Magnusson30, Sven Oskarsson31, Tune H. Pers10, Tune H. Pers11, Matthew R. Robinson6, Matthew R. Robinson32, Kevin Thom33, Chelsea Watson5, Christopher F. Chabris17, Michelle N. Meyer17, David Laibson4, Jian Yang6, Magnus Johannesson34, Philipp Koellinger8, Philipp Koellinger3, Patrick Turley4, Patrick Turley12, Peter M. Visscher6, Daniel J. Benjamin27, Daniel J. Benjamin5, David Cesarini33, David Cesarini27 
TL;DR: A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11–13% of the variance ineducational attainment and 7–10% ofthe variance in cognitive performance, which substantially increases the utility ofpolygenic scores as tools in research.
Abstract: Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11-13% of the variance in educational attainment and 7-10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.

1,658 citations


Journal ArticleDOI
22 Jun 2018-Science
TL;DR: It is demonstrated that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine, and it is shown that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures.
Abstract: Disorders of the brain can exhibit considerable epidemiological comorbidity and often share symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain disorders from genome-wide association studies of 265,218 patients and 784,643 control participants and assessed their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, whereas neurological disorders appear more distinct from one another and from the psychiatric disorders. We also identified significant sharing between disorders and a number of brain phenotypes, including cognitive measures. Further, we conducted simulations to explore how statistical power, diagnostic misclassification, and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a risk factor for brain disorders and the value of heritability-based methods in understanding their etiology.

1,357 citations


Journal ArticleDOI
Mary F. Feitosa1, Aldi T. Kraja1, Daniel I. Chasman2, Yun J. Sung1  +296 moreInstitutions (86)
18 Jun 2018-PLOS ONE
TL;DR: In insights into the role of alcohol consumption in the genetic architecture of hypertension, a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions is conducted.
Abstract: Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.

1,218 citations


Posted ContentDOI
Spyridon Bakas1, Mauricio Reyes, Andras Jakab2, Stefan Bauer3  +435 moreInstitutions (111)
TL;DR: This study assesses the state-of-the-art machine learning methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018, and investigates the challenge of identifying the best ML algorithms for each of these tasks.
Abstract: Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumoris a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses thestate-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross tota lresection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.

1,165 citations


Journal ArticleDOI
Anubha Mahajan1, Daniel Taliun2, Matthias Thurner1, Neil R. Robertson1, Jason M. Torres1, N. William Rayner3, N. William Rayner1, Anthony Payne1, Valgerdur Steinthorsdottir4, Robert A. Scott5, Niels Grarup6, James P. Cook7, Ellen M. Schmidt2, Matthias Wuttke8, Chloé Sarnowski9, Reedik Mägi10, Jana Nano11, Christian Gieger, Stella Trompet12, Cécile Lecoeur13, Michael Preuss14, Bram P. Prins3, Xiuqing Guo15, Lawrence F. Bielak2, Jennifer E. Below16, Donald W. Bowden17, John C. Chambers, Young-Jin Kim, Maggie C.Y. Ng17, Lauren E. Petty16, Xueling Sim18, Weihua Zhang19, Weihua Zhang20, Amanda J. Bennett1, Jette Bork-Jensen6, Chad M. Brummett2, Mickaël Canouil13, Kai-Uwe Ec Kardt21, Krista Fischer10, Sharon L.R. Kardia2, Florian Kronenberg22, Kristi Läll10, Ching-Ti Liu9, Adam E. Locke23, Jian'an Luan5, Ioanna Ntalla24, Vibe Nylander1, Sebastian Schönherr22, Claudia Schurmann14, Loic Yengo13, Erwin P. Bottinger14, Ivan Brandslund25, Cramer Christensen, George Dedoussis26, Jose C. Florez, Ian Ford27, Oscar H. Franco11, Timothy M. Frayling28, Vilmantas Giedraitis29, Sophie Hackinger3, Andrew T. Hattersley28, Christian Herder30, M. Arfan Ikram11, Martin Ingelsson29, Marit E. Jørgensen31, Marit E. Jørgensen25, Torben Jørgensen6, Torben Jørgensen32, Jennifer Kriebel, Johanna Kuusisto33, Symen Ligthart11, Cecilia M. Lindgren1, Cecilia M. Lindgren34, Allan Linneberg35, Allan Linneberg6, Valeriya Lyssenko36, Valeriya Lyssenko37, Vasiliki Mamakou26, Thomas Meitinger38, Karen L. Mohlke39, Andrew D. Morris40, Andrew D. Morris41, Girish N. Nadkarni14, James S. Pankow42, Annette Peters, Naveed Sattar43, Alena Stančáková33, Konstantin Strauch44, Kent D. Taylor15, Barbara Thorand, Gudmar Thorleifsson4, Unnur Thorsteinsdottir45, Unnur Thorsteinsdottir4, Jaakko Tuomilehto, Daniel R. Witte46, Josée Dupuis9, Patricia A. Peyser2, Eleftheria Zeggini3, Ruth J. F. Loos14, Philippe Froguel13, Philippe Froguel20, Erik Ingelsson47, Erik Ingelsson48, Lars Lind29, Leif Groop49, Leif Groop36, Markku Laakso33, Francis S. Collins50, J. Wouter Jukema12, Colin N. A. Palmer51, Harald Grallert, Andres Metspalu10, Abbas Dehghan11, Abbas Dehghan20, Anna Köttgen8, Gonçalo R. Abecasis2, James B. Meigs52, Jerome I. Rotter15, Jonathan Marchini1, Oluf Pedersen6, Torben Hansen25, Torben Hansen6, Claudia Langenberg5, Nicholas J. Wareham5, Kari Stefansson4, Kari Stefansson45, Anna L. Gloyn1, Andrew P. Morris1, Andrew P. Morris7, Andrew P. Morris10, Michael Boehnke2, Mark I. McCarthy1 
TL;DR: Combining 32 genome-wide association studies with high-density imputation provides a comprehensive view of the genetic contribution to type 2 diabetes in individuals of European ancestry with respect to locus discovery, causal-variant resolution, and mechanistic insight.
Abstract: We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency 2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).

1,136 citations


Journal ArticleDOI
05 Apr 2018-Nature
TL;DR: It is shown that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 by lipopolysaccharide in mouse and human macrophages and that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconates production.
Abstract: WebTreatment of lipopolysaccharide-activated macrophages with the cell-permeable itaconate derivative 4-octyl itaconate activates the anti-inflammatory transcription factor Nrf2 by alkylating key cysteine residues on the KEAP1 protein.

948 citations


Journal ArticleDOI
TL;DR: In this article, the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry was conducted.
Abstract: High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future

728 citations



Journal ArticleDOI
Douglas M. Ruderfer1, Stephan Ripke2, Stephan Ripke3, Stephan Ripke4  +628 moreInstitutions (156)
14 Jun 2018-Cell
TL;DR: For the first time, specific loci that distinguish between BD and SCZ are discovered and polygenic components underlying multiple symptom dimensions are identified that point to the utility of genetics to inform symptomology and potential treatment.

569 citations


Journal ArticleDOI
Carolina Roselli1, Mark Chaffin1, Lu-Chen Weng2, Lu-Chen Weng1  +257 moreInstitutions (82)
TL;DR: This large, multi-ethnic genome-wide association study identifies 97 loci significantly associated with atrial fibrillation that are enriched for genes involved in cardiac development, electrophysiology, structure and contractile function.
Abstract: Atrial fibrillation (AF) affects more than 33 million individuals worldwide1 and has a complex heritability2. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.

477 citations


Journal ArticleDOI
TL;DR: It is increasingly clear that within each T cell subset, IL-2 will signal within a framework of other signal transduction networks that together will shape the transcriptional and metabolic programs that determine T cell fate.
Abstract: The discovery of interleukin-2 (IL-2) changed the molecular understanding of how the immune system is controlled. IL-2 is a pleiotropic cytokine, and dissecting the signaling pathways that allow IL-2 to control the differentiation and homeostasis of both pro- and anti-inflammatory T cells is fundamental to determining the molecular details of immune regulation. The IL-2 receptor couples to JAK tyrosine kinases and activates the STAT5 transcription factors. However, IL-2 does much more than control transcriptional programs; it is a key regulator of T cell metabolic programs. The development of global phosphoproteomic approaches has expanded the understanding of IL-2 signaling further, revealing the diversity of phosphoproteins that may be influenced by IL-2 in T cells. However, it is increasingly clear that within each T cell subset, IL-2 will signal within a framework of other signal transduction networks that together will shape the transcriptional and metabolic programs that determine T cell fate.

Journal ArticleDOI
TL;DR: The occurrence and distribution of antibiotics and ARGs in global freshwater lakes are summarized to show the pollution level of antibioticsand ARGs and to identify some of the potential risks to ecosystem and human health.

Journal ArticleDOI
TL;DR: In postmortem brain tissue from individuals with idiopathic PD (iPD), LRRK2 kinase activity is aberrantly increased in vulnerable nigrostriatal dopamine neurons, suggesting that L RRK2 Kinase inhibitors may be useful for treating patients with iPD and PD patients carrying LRRk2 mutations.
Abstract: Missense mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD). However, a potential role of wild-type LRRK2 in idiopathic PD (iPD) remains unclear. Here, we developed proximity ligation assays to assess Ser1292 phosphorylation of LRRK2 and, separately, the dissociation of 14-3-3 proteins from LRRK2. Using these proximity ligation assays, we show that wild-type LRRK2 kinase activity was selectively enhanced in substantia nigra dopamine neurons in postmortem brain tissue from patients with iPD and in two different rat models of the disease. We show that this occurred through an oxidative mechanism, resulting in phosphorylation of the LRRK2 substrate Rab10 and other downstream consequences including abnormalities in mitochondrial protein import and lysosomal function. Our study suggests that, independent of mutations, wild-type LRRK2 plays a role in iPD. LRRK2 kinase inhibitors may therefore be useful for treating patients with iPD who do not carry LRRK2 mutations.

Journal ArticleDOI
TL;DR: These findings provide the first in vivo evidence that Pink1 is detectable at basal levels and that basal mammalian mitophagy occurs independently of PINK1, and suggest multiple, yet-to-be-discovered pathways orchestrating mammalian mitochondrial integrity in a context-dependent fashion.

Journal ArticleDOI
TL;DR: Just transition as mentioned in this paper is a new framework of analysis that brings together climate, energy and environmental justice scholarships, and it was originally coined as a term that was designed to link the promotion of clean technology with the assurance of green jobs.

Journal ArticleDOI
TL;DR: This work uses SUPPA2 to identify novel Transformer2-regulated exons, novel microexons induced during differentiation of bipolar neurons, and novel intron retention events during erythroblast differentiation.
Abstract: Despite the many approaches to study differential splicing from RNA-seq, many challenges remain unsolved, including computing capacity and sequencing depth requirements. Here we present SUPPA2, a new method that addresses these challenges, and enables streamlined analysis across multiple conditions taking into account biological variability. Using experimental and simulated data, we show that SUPPA2 achieves higher accuracy compared to other methods, especially at low sequencing depth and short read length. We use SUPPA2 to identify novel Transformer2-regulated exons, novel microexons induced during differentiation of bipolar neurons, and novel intron retention events during erythroblast differentiation.

Journal ArticleDOI
Anubha Mahajan1, Jennifer Wessel2, Sara M. Willems3, Wei Zhao4  +286 moreInstitutions (88)
TL;DR: Trans-ethnic analyses of exome array data identify new risk loci for type 2 diabetes and fine-mapping analyses using genome-wide association data show that the index coding variants represent the likely causal variants at only a subset of these loci.
Abstract: We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

Journal ArticleDOI
TL;DR: The data reveal that Rab29 is a master regulator of LRRK2, controlling its activation, localization, and potentially biomarker phosphorylation of a cluster of highly studied biomarkerosphorylation sites.
Abstract: Parkinson's disease predisposing LRRK2 kinase phosphorylates a group of Rab GTPase proteins including Rab29, within the effector-binding switch II motif. Previous work indicated that Rab29, located within the PARK16 locus mutated in Parkinson's patients, operates in a common pathway with LRRK2. Here, we show that Rab29 recruits LRRK2 to the trans-Golgi network and greatly stimulates its kinase activity. Pathogenic LRRK2 R1441G/C and Y1699C mutants that promote GTP binding are more readily recruited to the Golgi and activated by Rab29 than wild-type LRRK2. We identify conserved residues within the LRRK2 ankyrin domain that are required for Rab29-mediated Golgi recruitment and kinase activation. Consistent with these findings, knockout of Rab29 in A549 cells reduces endogenous LRRK2-mediated phosphorylation of Rab10. We show that mutations that prevent LRRK2 from interacting with either Rab29 or GTP strikingly inhibit phosphorylation of a cluster of highly studied biomarker phosphorylation sites (Ser910, Ser935, Ser955 and Ser973). Our data reveal that Rab29 is a master regulator of LRRK2, controlling its activation, localization, and potentially biomarker phosphorylation.

Journal ArticleDOI
01 Jan 2018-Gut
TL;DR: These updated guidelines on the management of abnormal liver blood tests have been commissioned by the Clinical Services and Standards Committee (CSSC) of the British Society of Gastroenterology (BSG) under the auspices of the liver section of the BSG.
Abstract: These updated guidelines on the management of abnormal liver blood tests have been commissioned by the Clinical Services and Standards Committee (CSSC) of the British Society of Gastroenterology (BSG) under the auspices of the liver section of the BSG. The original guidelines, which this document supersedes, were written in 2000 and have undergone extensive revision by members of the Guidelines Development Group (GDG). The GDG comprises representatives from patient/carer groups (British Liver Trust, Liver4life, PBC Foundation and PSC Support), elected members of the BSG liver section (including representatives from Scotland and Wales), British Association for the Study of the Liver (BASL), Specialist Advisory Committee in Clinical Biochemistry/Royal College of Pathology and Association for Clinical Biochemistry, British Society of Paediatric Gastroenterology, Hepatology and Nutrition (BSPGHAN), Public Health England (implementation and screening), Royal College of General Practice, British Society of Gastrointestinal and Abdominal Radiologists (BSGAR) and Society of Acute Medicine. The quality of evidence and grading of recommendations was appraised using the AGREE II tool. These guidelines deal specifically with the management of abnormal liver blood tests in children and adults in both primary and secondary care under the following subheadings: (1) What constitutes an abnormal liver blood test? (2) What constitutes a standard liver blood test panel? (3) When should liver blood tests be checked? (4) Does the extent and duration of abnormal liver blood tests determine subsequent investigation? (5) Response to abnormal liver blood tests. They are not designed to deal with the management of the underlying liver disease.

Journal ArticleDOI
TL;DR: This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasomesome and autophagy pathways.
Abstract: The proteasome degrades most cellular proteins in a controlled and tightly regulated manner and thereby controls many processes, including cell cycle, transcription, signalling, trafficking and protein quality control. Proteasomal degradation is vital in all cells and organisms, and dysfunction or failure of proteasomal degradation is associated with diverse human diseases, including cancer and neurodegeneration. Target selection is an important and well-established way to control protein degradation. In addition, mounting evidence indicates that cells adjust proteasome-mediated degradation to their needs by regulating proteasome abundance through the coordinated expression of proteasome subunits and assembly chaperones. Central to the regulation of proteasome assembly is TOR complex 1 (TORC1), which is the master regulator of cell growth and stress. This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasome and autophagy pathways. Understanding these mechanisms has potential implications for disease therapy, as the misregulation of proteasome function contributes to human diseases such as cancer and neurodegeneration.

Journal ArticleDOI
TL;DR: The literature on interventions to improve recruitment to trials has plenty of variety but little depth, and only 3 of 72 comparisons are supported by high-certainty evidence according to GRADE.
Abstract: Background: Recruiting participants to trials can be extremely difficult. Identifying strategies that improve trial recruitment would benefit both trialists and health research. Objectives: To quantify the effects of strategies for improving recruitment of participants to randomised trials. A secondary objective is to assess the evidence for the effect of the research setting (e.g. primary care versus secondary care) on recruitment. Search methods: We searched the Cochrane Methodology Review Group Specialised Register (CMR) in the Cochrane Library (July 2012, searched 11 February 2015); MEDLINE and MEDLINE In Process (OVID) (1946 to 10 February 2015); Embase (OVID) (1996 to 2015 Week 06); Science Citation Index & Social Science Citation Index (ISI) (2009 to 11 February 2015) and ERIC (EBSCO) (2009 to 11 February 2015). Selection criteria: Randomised and quasi-randomised trials of methods to increase recruitment to randomised trials. This includes non-healthcare studies and studies recruiting to hypothetical trials. We excluded studies aiming to increase response rates to questionnaires or trial retention and those evaluating incentives and disincentives for clinicians to recruit participants. Data collection and analysis: We extracted data on: the method evaluated; country in which the study was carried out; nature of the population; nature of the study setting; nature of the study to be recruited into; randomisation or quasi-randomisation method; and numbers and proportions in each intervention group. We used a risk difference to estimate the absolute improvement and the 95% confidence interval (CI) to describe the effect in individual trials. We assessed heterogeneity between trial results. We used GRADE to judge the certainty we had in the evidence coming from each comparison.

Journal ArticleDOI
Valérie Turcot1, Yingchang Lu2, Yingchang Lu3, Heather M. Highland4  +486 moreInstitutions (129)
TL;DR: Exome-wide analysis identifies rare and low-frequency coding variants associated with body mass index that confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
Abstract: Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.

Journal ArticleDOI
TL;DR: To the authors' knowledge, this trial is the largest investigation of the international consensus about optimal management of multimorbidity, and the 3D intervention did not improve patients' quality of life.

Journal ArticleDOI
TL;DR: Ten essentials for guiding action-oriented transformation and energy research are presented, framed in relation to second-order science, to create highly adaptive, reflexive, collaborative and impact-oriented research able to enhance capacity to respond to the climate challenge.
Abstract: The most critical question for climate research is no longer about the problem, but about how to facilitate the transformative changes necessary to avoid catastrophic climate-induced change. Addressing this question, however, will require massive upscaling of research that can rapidly enhance learning about transformations. Ten essentials for guiding action-oriented transformation and energy research are therefore presented, framed in relation to second-order science. They include: (1) Focus on transformations to low-carbon, resilient living; (2) Focus on solution processes; (3) Focus on ‘how to’ practical knowledge; (4) Approach research as occurring from within the system being intervened; (5) Work with normative aspects; (6) Seek to transcend current thinking; (7) Take a multi-faceted approach to understand and shape change; (8) Acknowledge the value of alternative roles of researchers; (9) Encourage second-order experimentation; and (10) Be reflexive. Joint application of the essentials would create highly adaptive, reflexive, collaborative and impact-oriented research able to enhance capacity to respond to the climate challenge. At present, however, the practice of such approaches is limited and constrained by dominance of other approaches. For wider transformations to low carbon living and energy systems to occur, transformations will therefore also be needed in the way in which knowledge is produced and used.

Journal ArticleDOI
TL;DR: The unique properties of BP are discussed, which make it a potential platform for biomedical applications compared to other 2D materials, including graphene, molybdenum disulphide (MoS2), tungsten diselenide (WSe2) and hexagonal boron nitride (h-BN).
Abstract: Black phosphorus (BP), also known as phosphorene, has attracted recent scientific attention since its first successful exfoliation in 2014 owing to its unique structure and properties. In particular, its exceptional attributes, such as the excellent optical and mechanical properties, electrical conductivity and electron-transfer capacity, contribute to its increasing demand as an alternative to graphene-based materials in biomedical applications. Although the outlook of this material seems promising, its practical applications are still highly challenging. In this review article, we discuss the unique properties of BP, which make it a potential platform for biomedical applications compared to other 2D materials, including graphene, molybdenum disulphide (MoS2), tungsten diselenide (WSe2) and hexagonal boron nitride (h-BN). We then introduce various synthesis methods of BP and review its latest progress in biomedical applications, such as biosensing, drug delivery, photoacoustic imaging and cancer therapies (i.e., photothermal and photodynamic therapies). Lastly, the existing challenges and future perspective of BP in biomedical applications are briefly discussed.

Journal ArticleDOI
TL;DR: Divergence from the recommended 7 to 8 hours of sleep is associated with a higher risk of mortality and cardiovascular events, and longer duration of sleep may be more associated with adverse outcomes compared with shorter sleep durations.
Abstract: Background There is growing evidence that sleep duration and quality may be associated with cardiovascular harm and mortality. Methods and Results We conducted a systematic review, meta‐analysis, a...

Journal ArticleDOI
TL;DR: HCV treatment should be offered to PWID, irrespective of ongoing drug use, and recent injection drug use should not be used as a reason to withhold reimbursement of HCV therapy.

Journal ArticleDOI
01 Jan 2018-Geoforum
TL;DR: In this article, a critical review of the literature on energy, environmental and climate justice on just transition is presented, showing that there are overlaps with energy, environment and climate change scholar communities.

Journal ArticleDOI
TL;DR: It is shown that glutamine serves predominantly as a signalling molecule that sustains cMyc expression to control NK cell metabolism and effector function and is identified as the predominant system l-amino acid transporter in activated NK cells.
Abstract: Natural killer (NK) cells are lymphocytes with important anti-tumour functions. Cytokine activation of NK cell glycolysis and oxidative phosphorylation (OXPHOS) are essential for robust NK cell responses. However, the mechanisms leading to this metabolic phenotype are unclear. Here we show that the transcription factor cMyc is essential for IL-2/IL-12-induced metabolic and functional responses in mice. cMyc protein levels are acutely regulated by amino acids; cMyc protein is lost rapidly when glutamine is withdrawn or when system L-amino acid transport is blocked. We identify SLC7A5 as the predominant system L-amino acid transporter in activated NK cells. Unlike other lymphocyte subsets, glutaminolysis and the tricarboxylic acid cycle do not sustain OXPHOS in activated NK cells. Glutamine withdrawal, but not the inhibition of glutaminolysis, results in the loss of cMyc protein, reduced cell growth and impaired NK cell responses. These data identify an essential role for amino acid-controlled cMyc for NK cell metabolism and function.

Proceedings ArticleDOI
TL;DR: This work provides the first comprehensive formal model of a protocol from the AKA family: 5G AKA, and finds that some critical security goals are not met, except under additional assumptions missing from the standard.
Abstract: Mobile communication networks connect much of the world's population. The security of users' calls, SMSs, and mobile data depends on the guarantees provided by the Authenticated Key Exchange protocols used. For the next-generation network (5G), the 3GPP group has standardized the 5G AKA protocol for this purpose. We provide the first comprehensive formal model of a protocol from the AKA family: 5G AKA. We also extract precise requirements from the 3GPP standards defining 5G and we identify missing security goals. Using the security protocol verification tool Tamarin, we conduct a full, systematic, security evaluation of the model with respect to the 5G security goals. Our automated analysis identifies the minimal security assumptions required for each security goal and we find that some critical security goals are not met, except under additional assumptions missing from the standard. Finally, we make explicit recommendations with provably secure fixes for the attacks and weaknesses we found.