scispace - formally typeset
Search or ask a question
Institution

University of Lausanne

EducationLausanne, Switzerland
About: University of Lausanne is a education organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Medicine. The organization has 20508 authors who have published 46458 publications receiving 1996655 citations. The organization is also known as: Université de Lausanne & UNIL.


Papers
More filters
Journal ArticleDOI
TL;DR: These approaches are reviewed with respect to their ability to infer SVs across the full spectrum of large, complex variations and present computational methods for each approach.
Abstract: Recent research into structural variants (SVs) has established their importance to medicine and molecular biology, elucidating their role in various diseases, regulation of gene expression, ethnic diversity, and large-scale chromosome evolution—giving rise to the differences within populations and among species. Nevertheless, characterizing SVs and determining the optimal approach for a given experimental design remains a computational and scientific challenge. Multiple approaches have emerged to target various SV classes, zygosities, and size ranges. Here, we review these approaches with respect to their ability to infer SVs across the full spectrum of large, complex variations and present computational methods for each approach.

353 citations

Journal ArticleDOI
TL;DR: There was no significant difference in outcome of the overall patient population treated with either radiotherapy alone or TMZ chemotherapy alone, and further data maturation is needed for overall survival analyses and evaluation of the full predictive impact of the molecular subtypes for individualized treatment choices.
Abstract: Summary Background Outcome of low-grade glioma (WHO grade II) is highly variable, reflecting molecular heterogeneity of the disease. We compared two different, single-modality treatment strategies of standard radiotherapy versus primary temozolomide chemotherapy in patients with low-grade glioma, and assessed progression-free survival outcomes and identified predictive molecular factors. Methods For this randomised, open-label, phase 3 intergroup study (EORTC 22033-26033), undertaken in 78 clinical centres in 19 countries, we included patients aged 18 years or older who had a low-grade (WHO grade II) glioma (astrocytoma, oligoastrocytoma, or oligodendroglioma) with at least one high-risk feature (aged >40 years, progressive disease, tumour size >5 cm, tumour crossing the midline, or neurological symptoms), and without known HIV infection, chronic hepatitis B or C virus infection, or any condition that could interfere with oral drug administration. Eligible patients were randomly assigned (1:1) to receive either conformal radiotherapy (up to 50·4 Gy; 28 doses of 1·8 Gy once daily, 5 days per week for up to 6·5 weeks) or dose-dense oral temozolomide (75 mg/m 2 once daily for 21 days, repeated every 28 days [one cycle], for a maximum of 12 cycles). Random treatment allocation was done online by a minimisation technique with prospective stratification by institution, 1p deletion (absent vs present vs undetermined), contrast enhancement (yes vs no), age ( vs ≥40 years), and WHO performance status (0 vs ≥1). Patients, treating physicians, and researchers were aware of the assigned intervention. A planned analysis was done after 216 progression events occurred. Our primary clinical endpoint was progression-free survival, analysed by intention-to-treat; secondary outcomes were overall survival, adverse events, neurocognitive function (will be reported separately), health-related quality of life and neurological function (reported separately), and correlative analyses of progression-free survival by molecular markers (1p/19q co-deletion, MGMT promoter methylation status, and IDH1/IDH2 mutations). This trial is closed to accrual but continuing for follow-up, and is registered at the European Trials Registry, EudraCT 2004-002714-11, and at ClinicalTrials.gov, NCT00182819. Findings Between Sept 23, 2005, and March 26, 2010, 707 patients were registered for the study. Between Dec 6, 2005, and Dec 21, 2012, we randomly assigned 477 patients to receive either radiotherapy (n=240) or temozolomide chemotherapy (n=237). At a median follow-up of 48 months (IQR 31–56), median progression-free survival was 39 months (95% CI 35–44) in the temozolomide group and 46 months (40–56) in the radiotherapy group (unadjusted hazard ratio [HR] 1·16, 95% CI 0·9–1·5, p=0·22). Median overall survival has not been reached. Exploratory analyses in 318 molecularly-defined patients confirmed the significantly different prognosis for progression-free survival in the three recently defined molecular low-grade glioma subgroups ( IDH mt, with or without 1p/19q co-deletion [ IDH mt/codel], or IDH wild type [ IDH wt]; p=0·013). Patients with IDH mt/non-codel tumours treated with radiotherapy had a longer progression-free survival than those treated with temozolomide (HR 1·86 [95% CI 1·21–2·87], log-rank p=0·0043), whereas there were no significant treatment-dependent differences in progression-free survival for patients with IDH mt/codel and IDH wt tumours. Grade 3–4 haematological adverse events occurred in 32 (14%) of 236 patients treated with temozolomide and in one ( Interpretation Overall, there was no significant difference in progression-free survival in patients with low-grade glioma when treated with either radiotherapy alone or temozolomide chemotherapy alone. Further data maturation is needed for overall survival analyses and evaluation of the full predictive effects of different molecular subtypes for future individualised treatment choices. Funding Merck Sharpe & Dohme-Merck & Co, Canadian Cancer Society, Swiss Cancer League, UK National Institutes of Health, Australian National Health and Medical Research Council, US National Cancer Institute, European Organisation for Research and Treatment of Cancer Cancer Research Fund.

353 citations

Journal ArticleDOI
TL;DR: Individual sample replicates are used, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome and optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci.
Abstract: Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.

353 citations

Journal ArticleDOI
TL;DR: It is shown here that, in the absence of gametic disequilibrium, the multilocus structure can be used to derive estimates of s independent of FIS and free of technical biases, which opens the way to make use of the ever‐growing number of published population genetic studies, in addition to the more demanding progeny‐array approaches, to investigate selfing rates.
Abstract: Genotypic frequencies at codominant marker loci in population samples convey information on mating systems. A classical way to extract this information is to measure heterozygote deficiencies (FIS) and obtain the selfing rate s from FIS = s/(2 - s), assuming inbreeding equilibrium. A major drawback is that heterozygote deficiencies are often present without selfing, owing largely to technical artefacts such as null alleles or partial dominance. We show here that, in the absence of gametic disequilibrium, the multilocus structure can be used to derive estimates of s independent of FIS and free of technical biases. Their statistical power and precision are comparable to those of FIS, although they are sensitive to certain types of gametic disequilibria, a bias shared with progeny-array methods but not FIS. We analyse four real data sets spanning a range of mating systems. In two examples, we obtain s = 0 despite positive FIS, strongly suggesting that the latter are artefactual. In the remaining examples, all estimates are consistent. All the computations have been implemented in a open-access and user-friendly software called rmes (robust multilocus estimate of selfing) available at http://ftp.cefe.cnrs.fr, and can be used on any multilocus data. Being able to extract the reliable information from imperfect data, our method opens the way to make use of the ever-growing number of published population genetic studies, in addition to the more demanding progeny-array approaches, to investigate selfing rates.

353 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a state-biased dispersal can be directly inferred from microsatellite genotype distributions, which opens new perspectives for empirical studies in this area.
Abstract: We investigated dispersal patterns in the monogamous Crocidura russula , based both on direct field observations (mark-recapture data) and on genetic analyses (microsatellite loci). Natal dispersal was found to be low. Most juveniles settled within their natal territory or one immediately adjacent. Migration rate was estimated to two individuals per year and per population. The correlation between genetic and geographical distances over a 16 km transect implies that migration occurs over short ranges. Natal dispersal was restricted to first-litter juveniles weaned in early May; this result suggests a direct dependence of dispersal on reproductive opportunities. Natal dispersal was highly female biased, a pattern unusual among mammals. Its association with monogamy provides support for the resource-competition model of dispersal. Our results demonstrate that a state-biased dispersal can be directly inferred from microsatellite genotype distributions, which opens new perspectives for empirical studies in this area.

353 citations


Authors

Showing all 20911 results

NameH-indexPapersCitations
Peer Bork206697245427
Aaron R. Folsom1811118134044
Kari Alitalo174817114231
Ralph A. DeFronzo160759132993
Johan Auwerx15865395779
Silvia Franceschi1551340112504
Matthias Egger152901184176
Bart Staels15282486638
Fernando Rivadeneira14662886582
Christopher George Tully1421843111669
Richard S. J. Frackowiak142309100726
Peter Timothy Cox140126795584
Jürg Tschopp14032886900
Stylianos E. Antonarakis13874693605
Michael Weller134110591874
Network Information
Related Institutions (5)
Utrecht University
139.3K papers, 6.2M citations

93% related

Yale University
220.6K papers, 12.8M citations

93% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

92% related

University of British Columbia
209.6K papers, 9.2M citations

92% related

Boston University
119.6K papers, 6.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023249
2022635
20213,970
20203,508
20193,091
20182,776