scispace - formally typeset
Search or ask a question

Showing papers in "Cell discovery in 2018"


Journal ArticleDOI
TL;DR: In a recent study, it was found that Cas 12a, which belongs to the class 2 type V-A CRISPR-Cas system, performed collateral cleavage on non-targeted ssDNAs upon the formation of the Cas12a/crRNA/target DNA ternary complex.
Abstract: Dear Editor, Today, the need for time-effective and cost-effective nucleic acid detection methods is still growing in fields such as human genotyping and pathogen detection. Using synthetic biomolecular components, many methods have been developed for fast nucleic acid detection; however, they may not be able to satisfy specificity, sensitivity, speed, cost and simplicity at the same time. Recently, a very promising CRISPR-based diagnostic (CRISPR-Dx) (namely SHERLOCK) was established, which was based on the collateral effect of an RNA-guided and RNAtargeting CRISPR effector, Cas13a. SHERLOCK is of high sensitivity and specificity, and is very convenient in detection of target RNA. However, to detect DNA sequences, in vitro transcription of DNA to RNA must be conducted prior to the SHERLOCK test, which could be inconvenient. In a recent study, we found that Cas12a, which belongs to the class 2 type V-A CRISPR-Cas system, performed collateral cleavage on non-targeted ssDNAs upon the formation of the Cas12a/crRNA/target DNA ternary complex. Here, with the employment of this feature, we used a quenched fluorescent ssDNA reporter (e.g., HEX-N12-BHQ1 in Supplementary Table S1) as the probe, and developed HOLMES (an one-HOur Low-cost Multipurpose highly Efficient System), which could be used for fast detection of target DNA as well as target RNA. In HOLMES, if a target DNA exists in the reaction system, the Cas12a/crRNA binary complex forms a ternary complex with the target DNA, which will then trans-cleave non-targeted ssDNA reporter in the system, illuminating the HEX fluorescence (or any other fluorescence) (Fig. 1a). We ever purified ten Cas12a proteins (Supplementary Table S3) and found all showed the ssDNA trans-cleavage activity. To find the most suitable Cas12a for HOLMES (i.e., with high signal-to-noise ratios), we tested all ten Cas12a proteins and found Lachnospiraceae bacterium ND2006 Cas12a (LbCas12a), Oribacterium sp. NK2B42 Cas12a (OsCas12a), Lachnospiraceae bacterium NC2008 Cas12a (Lb5Cas12a) and Francisella tularensis Cas12a (FnCas12a) showed good performance, among which LbCas12a was chosen for the following studies (Fig. 1b). To determine the sensitivity of HOLMES, we titrated target DNA, and found the minimum detectable concentration for Cas12a-crRNA was approximately 0.1 nM; however, when combined with PCR, the detectable concentration could be as low as 10 aM (Fig. 1c), which was comparable to the SHERLOCK system and was better than PCR alone or quantitative PCR using the SYBR Green method (Supplementary Figure S1). Therefore, to achieve higher sensitivity, PCR amplification was employed in the HOLMES test thereafter. To test whether HOLMES could discriminate singlebase differences, we made point mutations at different positions in the target DNA sequence, including both the PAM region and the guide sequences (Supplementary Figure S2a). When a full length of crRNA guide sequence (24-nt crRNA, Supplementary Table S2) was used, we found mutations in either the PAM sequences or the region of the 1st–7th bases of the guide sequence resulted in clear decline of the fluorescence signal; however, no significant difference was observed when the mutation was within the region of the 8th–18th bases (Supplementary Figure S2b), which was highly consistent with the previous report that the 5′-end seed region in the crRNA

708 citations


Journal ArticleDOI
TL;DR: A characterization of the full m6A methyltransferase complex in HeLa cells is reported identifying METTL3/METTL14/WTAP/VIRMA/HAKAI/ZC3H13 as the key components, and it is shown that VIRMA mediates preferential mRNA methylation in 3′UTR and near stop codon.
Abstract: N6-methyladenosine (m6A) is enriched in 3′untranslated region (3′UTR) and near stop codon of mature polyadenylated mRNAs in mammalian systems and has regulatory roles in eukaryotic mRNA transcriptome switch. Significantly, the mechanism for this modification preference remains unknown, however. Herein we report a characterization of the full m6A methyltransferase complex in HeLa cells identifying METTL3/METTL14/WTAP/VIRMA/HAKAI/ZC3H13 as the key components, and we show that VIRMA mediates preferential mRNA methylation in 3′UTR and near stop codon. Biochemical studies reveal that VIRMA recruits the catalytic core components METTL3/METTL14/WTAP to guide region-selective methylations. Around 60% of VIRMA mRNA immunoprecipitation targets manifest strong m6A enrichment in 3′UTR. Depletions of VIRMA and METTL3 induce 3′UTR lengthening of several hundred mRNAs with over 50% targets in common. VIRMA associates with polyadenylation cleavage factors CPSF5 and CPSF6 in an RNA-dependent manner. Depletion of CPSF5 leads to significant shortening of 3′UTR of over 2800 mRNAs, 84% of which are modified with m6A and have increased m6A peak density in 3′UTR and near stop codon after CPSF5 knockdown. Together, our studies provide insights into m6A deposition specificity in 3′UTR and its correlation with alternative polyadenylation.

554 citations


Journal ArticleDOI
TL;DR: The identification of a Cas12b system from the Alicyclobacillus acidiphilus (AaCas12b), which maintains optimal nuclease activity over a wide temperature range (31 °C–59 °C), establishes CRISPR-Cas 12b as a versatile tool for mammalian genome engineering.
Abstract: The prokaryotic CRISPR-Cas adaptive immune systems provide valuable resources to develop genome editing tools, such as CRISPR-Cas9 and CRISPR-Cas12a/Cpf1. Recently, CRISPR-Cas12b/C2c1, a distinct type V-B system, has been characterized as a dual-RNA-guided DNA endonuclease system. Though being active in vitro, its cleavage activity at endogenous genome remains to be explored. Furthermore, the optimal cleavage temperature of the reported Cas12b orthologs is higher than 40 °C, which is unsuitable for mammalian applications. Here, we report the identification of a Cas12b system from the Alicyclobacillus acidiphilus (AaCas12b), which maintains optimal nuclease activity over a wide temperature range (31 °C–59 °C). AaCas12b can be repurposed to engineer mammalian genomes for versatile applications, including single and multiplex genome editing, gene activation, and generation of gene mutant mouse models. Moreover, whole-genome sequencing reveals high specificity and minimal off-target effects of AaCas12b-meditated genome editing. Our findings establish CRISPR-Cas12b as a versatile tool for mammalian genome engineering.

167 citations


Journal ArticleDOI
TL;DR: It is shown that emetine, an anti-protozoal agent, potently inhibits ZIKV and EBOV infection with a low nanomolar half maximal inhibitory concentration (IC50) in vitro and potent activity in vivo.
Abstract: The re-emergence of Zika virus (ZIKV) and Ebola virus (EBOV) poses serious and continued threats to the global public health. Effective therapeutics for these maladies is an unmet need. Here, we show that emetine, an anti-protozoal agent, potently inhibits ZIKV and EBOV infection with a low nanomolar half maximal inhibitory concentration (IC50) in vitro and potent activity in vivo. Two mechanisms of action for emetine are identified: the inhibition of ZIKV NS5 polymerase activity and disruption of lysosomal function. Emetine also inhibits EBOV entry. Cephaeline, a desmethyl analog of emetine, which may be better tolerated in patients than emetine, exhibits a similar efficacy against both ZIKV and EBOV infections. Hence, emetine and cephaeline offer pharmaceutical therapies against both ZIKV and EBOV infection.

128 citations


Journal ArticleDOI
TL;DR: ABE is a highly precise and efficient base editor for rat genome editing and provides a much safer approach compared with wild-type CRISPR/Cas9 system for gene correction of human disease.
Abstract: Dear Editor Rats are reference laboratory animal models for understanding mechanism of human diseases such as diabetes, hypertension, and neurological disorder. CRISPR/Cas9 system has proved an efficient and flexible tool to generate gene modified rats. Great efforts have been made to reduce the side effects and extend the application of this system. Cytosine base editor (CBE), containing the engineered cytosine deaminase with CRISPR/Cas9 can be used to modify mammal genomic DNA without induction of double-strand DNA break or template. CBE targets sequence by inducing C·G to T·A conversion with a window of approximately five nucleotides. Recently, the same group developed a new dCas9guide tRNA adenosine deaminase which was capable of inducing A·T to G·C conversion. Together with CBE, ABE enables introduction of all four nucleotides transitions (C to T, A to G, T to C, and G to A) in target genomic sequence. These base-editing tools provide a much safer approach compared with wild-type CRISPR/Cas9 system for gene correction of human disease. Here we report the application of this newly developed adenine base editors in rat base editing. Two experiments were designed to test this system in rats. For the first experiment, we selected one targeting site at Hemgn gene locus (Fig. 1, Supplementary Table S1). For the second experiment, we selected two targeting sites at N-deacetylase and N-sulfotransferase 4 (Ndst4) gene loci (Fig. 1, Supplementary Table S1). The ABE and sgRNAs were prepared in vitro as described. Twenty-five nanograms per microliter of ABE mRNA and 20 ng/ml of sgRNA were prepared for microinjection. Animals in Sprague Dawley (SD) background were used in all experiments. Tail genomic DNA of born pups was extracted and used as a template for genotyping. For Hemgn targeting, a total of 99 injected zygotes were transferred to 3 pseudopregnant female SD rats and 15 pups were born (Fig. 1a). To test the base editing efficiency, the fragment including the target site was amplified and sequenced (Supplementary Table S2). Fourteen rats (14/15) (potential founders #1–2, #4–15) contained an A to G conversion at the 14th base distal from the PAM (Fig. 1a, b; Supplementary Fig. S1). Two rats (2/15) (potential founders #5, #10) revealed an A to G conversion at the 18th base distal from the PAM (Fig. 1a, b; Supplementary Fig. S1), indicating the high base-editing efficiency. To further analyze the on-target editing effects, deep sequencing was applied to sample #1, #8, #10, and #12. More than 3M (1024×1024 bit) clean data for each sample were obtained (Supplementary Table S4). The result showed that 14th base distal from the PAM showed A to G conversion with efficiency as high as 0.99 for #1, 0.34 for #8, 0.49 for #10, and 0.99 for sample #12. The conversion efficiency at 18th base distal from the PAM was 0.43 for #10 (Fig. 1c). No other alteration or indel was detected in the selected samples (data not shown). The results showed ABE is a highly precise and efficient base editor for rat genome editing. For most of human diseases with more than one mutation. Multiple base editing capability is valuable for

95 citations


Journal ArticleDOI
TL;DR: It is demonstrated that AbTCR activates cytotoxic T-cell responses with a similar dose-response as CD28/CD3ζ CAR, yet does so with less cytokine release and results in T cells with a less exhausted phenotype, in comparative studies with the clinically validated CD137 (4-1BB)-based CAR, CTL019.
Abstract: The clinical use of genetically modified T-cell therapies has led to unprecedented response rates in leukemia and lymphoma patients treated with anti-CD19 chimeric antigen receptor (CAR)-T. Despite this clinical success, FDA-approved T-cell therapies are currently limited to B-cell malignancies, and challenges remain with managing cytokine-related toxicities. We have designed a novel antibody-T-cell receptor (AbTCR) platform where we combined the Fab domain of an antibody with the γ and δ chains of the TCR as the effector domain. We demonstrate the ability of anti-CD19-AbTCR-T cells to trigger antigen-specific cytokine production, degranulation, and killing of CD19-positive cancer cells in vitro and in xenograft mouse models. By using the same anti-CD19 binding moiety on an AbTCR compared to a CAR platform, we demonstrate that AbTCR activates cytotoxic T-cell responses with a similar dose-response as CD28/CD3ζ CAR, yet does so with less cytokine release and results in T cells with a less exhausted phenotype. Moreover, in comparative studies with the clinically validated CD137 (4-1BB)-based CAR, CTL019, our anti-CD19-AbTCR shows less cytokine release and comparable tumor inhibition in a patient-derived xenograft leukemia model.

79 citations


Journal ArticleDOI
TL;DR: TRIM29, a ubiquitin E3 ligase, functions as an inducible negative regulator of innate immune response triggered by DNA virus and cytosolic DNA, preventing potential damage caused by overcommitted immune responses.
Abstract: Innate immune system is armed by several lines of pattern recognition receptors to sense various viral infection and to initiate antiviral immune response. This process is under a tight control and the negative feedback induced by infection and/or inflammation is critical to maintain immune homoeostasis and to prevent autoimmune disorders, however, the molecular mechanism is not fully understood. Here we report TRIM29, a ubiquitin E3 ligase, functions as an inducible negative regulator of innate immune response triggered by DNA virus and cytosolic DNA. DNA virus and cytosolic DNA stimulation induce TRIM29 expression robustly in macrophages and dendritic cells, although the basal level of TRIM29 is undetectable in those cells. TRIM29 deficiency elevates IFN-I and proinflammatory cytokine production upon viral DNA and cytosolic dsDNA stimulation. Consistently, in vivo experiments show that TRIM29-deficient mice are more resistant to HSV-1 infection than WT controls, indicated by better survival rate and reduced viral load in organs. Mechanism studies suggest that STING-TBK1-IRF3 signaling pathway in TRIM29 KO cells is significantly enhanced and the degradation of STING is impaired. Furthermore, we identify that TRIM29 targets STING for K48 ubiquitination and degradation. This study reveals TRIM29 as a crucial negative regulator in immune response to DNA virus and cytosolic DNA, preventing potential damage caused by overcommitted immune responses.

72 citations


Journal ArticleDOI
TL;DR: A transcellular protein quality control regulatory pathway in which a deubiquitinase-chaperone axis forms a “triaging hub”, transferring aberrant polypeptides from stressed cells to healthy ones for disposal is suggested.
Abstract: Cell-to-cell transmission of misfolded proteins propagates proteotoxic stress in multicellular organisms when transmitted polypeptides serve as a seeding template to cause protein misfolding in recipient cells, but how misfolded proteins are released from cells to initiate this process is unclear. Misfolding-associated protein secretion (MAPS) is an unconventional protein-disposing mechanism that specifically exports misfolded cytosolic proteins including various neurodegenerative disease-causing proteins. Here we establish the HSC70 co-chaperone DNAJC5 as an essential mediator of MAPS. USP19, a previously uncovered MAPS regulator binds HSC70 and acts upstream of HSC70 and DNAJC5. We further show that as a membrane-associated protein localized preferentially to late endosomes and lysosomes, DNAJC5 can chaperone MAPS client proteins to the cell exterior. Intriguingly, upon secretion, misfolded proteins can be taken up through endocytosis and eventually degraded in the lysosome. Collectively, these findings suggest a transcellular protein quality control regulatory pathway in which a deubiquitinase-chaperone axis forms a “triaging hub”, transferring aberrant polypeptides from stressed cells to healthy ones for disposal.

72 citations


Journal ArticleDOI
TL;DR: The inverse agonist-bound 5-HT1BR structure provides a structural understanding of the inactivation mechanism of 5- HT1BR and some other class A GPCRs, characterized by ligand-induced outward movement of the extracellular end of TM6 that is coupled with inward move of the cytoplasmic end of this helix.
Abstract: 5-hydroxytryptamine (5-HT, also known as serotonin) regulates many physiological processes through the 5-HT receptor family. Here we report the crystal structure of 5-HT1B subtype receptor (5-HT1BR) bound to the psychotropic serotonin receptor inverse agonist methiothepin (MT). Crystallization was facilitated by replacing ICL3 with a novel optimized variant of BRIL (OB1) that enhances the formation of intermolecular polar interactions, making OB1 a potential useful tool for structural studies of membrane proteins. Unlike the agonist ergotamine (ERG), MT occupies only the conserved orthosteric binding pocket, explaining the wide spectrum effect of MT on serotonin receptors. Compared with ERG, MT shifts toward TM6 and sterically pushes residues W3276.48, F3306.50 and F3316.51 from inside the orthosteric binding pocket, leading to an outward movement of the extracellular end and a corresponding inward shift of the intracellular end of TM6, a feature shared by other reported inactive G protein-coupled receptor (GPCR) structures. Together with the previous agonist-bound serotonin receptor structures, the inverse agonist-bound 5-HT1BR structure identifies a basis for the ligand-mediated switch of 5-HT1BR activity and provides a structural understanding of the inactivation mechanism of 5-HT1BR and some other class A GPCRs, characterized by ligand-induced outward movement of the extracellular end of TM6 that is coupled with inward movement of the cytoplasmic end of this helix.

69 citations


Journal ArticleDOI
TL;DR: The sequencing and analysis of the genome and extensive transcriptomes of the sea cucumber Apostichopus japonicus are reported, a species from a special echinoderm group with extraordinary potential for saponin synthesis, aestivation and organ regeneration.
Abstract: Echinoderms exhibit several fascinating evolutionary innovations that are rarely seen in the animal kingdom, but how these animals attained such features is not well understood. Here we report the sequencing and analysis of the genome and extensive transcriptomes of the sea cucumber Apostichopus japonicus, a species from a special echinoderm group with extraordinary potential for saponin synthesis, aestivation and organ regeneration. The sea cucumber does not possess a reorganized Hox cluster as previously assumed for all echinoderms, and the spatial expression of Hox7 and Hox11/13b potentially guides the embryo-to-larva axial transformation. Contrary to the typical production of lanosterol in animal cholesterol synthesis, the oxidosqualene cyclase of sea cucumber produces parkeol for saponin synthesis and has “plant-like” motifs suggestive of convergent evolution. The transcriptional factors Klf2 and Egr1 are identified as key regulators of aestivation, probably exerting their effects through a clock gene-controlled process. Intestinal hypometabolism during aestivation is driven by the DNA hypermethylation of various metabolic gene pathways, whereas the transcriptional network of intestine regeneration involves diverse signaling pathways, including Wnt, Hippo and FGF. Decoding the sea cucumber genome provides a new avenue for an in-depth understanding of the extraordinary features of sea cucumbers and other echinoderms.

68 citations


Journal ArticleDOI
TL;DR: The extra-retinal origins of microglia in the adult mammalian retina are identified for the first time by using a model ofmicroglial repopulation, which may shed light on the target exploration of therapeutic interventions for retinal degenerative disorders.
Abstract: Elucidating the origin of microglia is crucial for understanding their functions and homeostasis. Previous study has indicated that Nestin-positive progenitor cells differentiate into microglia and replenish the brain after depleting most brain microglia. Microglia have also shown the capacity to repopulate the retina after eliminating all retinal microglia. However, the origin(s) of repopulated retinal microglia is/are unknown. In this study, we aim to investigate the origins of repopulated microglia in the retina. Interestingly, we find that repopulated retinal microglia are not derived from Nestin-positive progenitor cells. Instead, they have two origins: the center-emerging microglia are derived from residual microglia in the optic nerve and the periphery-emerging microglia are derived from macrophages in the ciliary body/iris. Therefore, we have for the first time identified the extra-retinal origins of microglia in the adult mammalian retina by using a model of microglial repopulation, which may shed light on the target exploration of therapeutic interventions for retinal degenerative disorders.

Journal ArticleDOI
TL;DR: Visual and physiological testing indicated limited functional improvement, albeit to different degrees between patients, and some promising early results concerning the use of transplanted hESC-RPE cells to alleviate wet-AMD are provided.
Abstract: Stem cell therapy may provide a safe and promising treatment for retinal diseases. Wet age-related macular degeneration (wet-AMD) is a leading cause of blindness in China. We developed a clinical-grade human embryonic stem cell (hESC) line, Q-CTS-hESC-2, under xeno-free conditions that differentiated into retinal pigment epithelial cells (Q-CTS-hESC-2-RPE). A clinical trial with three wet-AMD patients was initiated in order to study the safety and tolerance to Q-CTS-hESC-2-RPE cell transplants. The choroidal neovascularization membrane was removed and then a suspension of 1 × 106 Q-CTS-hESC-2-RPE cells were injected into a subfoveal pocket. The patients were followed for 12 months during which no adverse effects resulting from the transplant were observed. Anatomical evidence suggested the existence of new RPE-like cell layer in the previously damaged area. Visual and physiological testing indicated limited functional improvement, albeit to different degrees between patients. This study provides some promising early results concerning the use of transplanted hESC-RPE cells to alleviate wet-AMD.

Journal ArticleDOI
TL;DR: It is found that ZIKV specifically infected glial fibrillary acidic protein- and S100B-positive primary human astrocytes derived from fetal brains, and the infection can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869.
Abstract: Zika virus (ZIKV) is a neurotrophic flavivirus that is capable of infecting humans, leading to brain abnormalities during fetal development. The ZIKV infectivity in neural target cells remains poorly understood. Here, we found that ZIKV specifically infected glial fibrillary acidic protein- and S100B-positive primary human astrocytes derived from fetal brains. In contrast, neuron-specific Class III β-tubulin (TuJ1)-positive neurons in the astrocyte cultures and SOX2-positive neural progenitor cells derived from the fetal brains were less susceptible to ZIKV infection compared with astrocytes. The infected astrocytes released competent viral particles and manifested programmed cell death with a progressive cytopathic effect. Interestingly, ZIKV infection in human fetal astrocytes induced a significant increase of extracellular vesicles (EVs). Treatment with GW4869, a specific inhibitor of neutral sphingomyelinase-2, decreased EV levels, suppressed ZIKV propagation, and reduced the release of infectious virions in astrocytes. Therefore, ZIKV infects primary human fetal astrocytes and the infection can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Further investigation into sphingomyelin metabolism and EVs may provide insights to the therapeutic treatment of ZIKV infection.

ComponentDOI
TL;DR: The structures of Pol III pre-initiation complexes (PICs) are determined using single particle cryo-electron microscopy (cryo-EM) and a 3D reconstruction ofPol III in complex with TFIIIB using the elongation complex (EC) scaffold is obtained, shedding light on the mechanism of facilitated recycling of PolIII prior to transcription re-initiated.
Abstract: RNA polymerase III (Pol III) transcription initiation requires the action of the transcription factor IIIB (TFIIIB) and is highly regulated. Here, we determine the structures of Pol III pre-initiation complexes (PICs) using single particle cryo-electron microscopy (cryo-EM). We observe stable Pol III–TFIIIB complexes using nucleic acid scaffolds mimicking various functional states, in which TFIIIB tightly encircles the upstream promoter DNA. There is an intricate interaction between TFIIIB and Pol III, which stabilizes the winged-helix domains of the C34 subunit of Pol III over the active site cleft. The architecture of Pol III PIC more resembles that of the Pol II PIC than the Pol I PIC. In addition, we also obtain a 3D reconstruction of Pol III in complex with TFIIIB using the elongation complex (EC) scaffold, shedding light on the mechanism of facilitated recycling of Pol III prior to transcription re-initiation.

Journal ArticleDOI
TL;DR: This study unravels the first ATF6-regulated gene expression network related to homeostatic regulation of membrane organelles, and provides novel mechanistic insights into aging-associated attrition of human stem cells.
Abstract: Loss of organelle homeostasis is a hallmark of aging. However, it remains elusive how this occurs at gene expression level. Here, we report that human mesenchymal stem cell (hMSC) aging is associated with dysfunction of double-membrane organelles and downregulation of transcription factor ATF6. CRISPR/Cas9-mediated inactivation of ATF6 in hMSCs, not in human embryonic stem cells and human adipocytes, results in premature cellular aging, characteristic of loss of endomembrane homeostasis. Transcriptomic analyses uncover cell type-specific constitutive and stress-induced ATF6-regulated genes implicated in various layers of organelles’ homeostasis regulation. FOS was characterized as a constitutive ATF6 responsive gene, downregulation of which contributes to hMSC aging. Our study unravels the first ATF6-regulated gene expression network related to homeostatic regulation of membrane organelles, and provides novel mechanistic insights into aging-associated attrition of human stem cells.

Journal ArticleDOI
TL;DR: It is shown that tuftelin 1 (TUFT1) was involved in the activation of mTORC1 through modulating the Rab GTPase-regulated process and suggested that it is a promising therapeutic target or a biomarker for tumor progression.
Abstract: The mammalian target of rapamycin (mTOR) pathway is commonly activated in human cancers. The activity of mTOR complex 1 (mTORC1) signaling is supported by the intracellular positioning of cellular compartments and vesicle trafficking, regulated by Rab GTPases. Here we showed that tuftelin 1 (TUFT1) was involved in the activation of mTORC1 through modulating the Rab GTPase-regulated process. TUFT1 promoted tumor growth and metastasis. Consistently, the expression of TUFT1 correlated with poor prognosis in lung, breast and gastric cancers. Mechanistically, TUFT1 physically interacted with RABGAP1, thereby modulating intracellular lysosomal positioning and vesicular trafficking, and promoted mTORC1 signaling. In addition, expression of TUFT1 predicted sensitivity to perifosine, an alkylphospholipid that alters the composition of lipid rafts. Perifosine treatment altered the positioning and trafficking of cellular compartments to inhibit mTORC1. Our observations indicate that TUFT1 is a key regulator of the mTORC1 pathway and suggest that it is a promising therapeutic target or a biomarker for tumor progression.

Journal ArticleDOI
TL;DR: It is shown that these four drugs of abuse profoundly modulate the activity of mouse midbrain dopamine neurons and serotonin neurons with distinct potency and kinetics, and suggests that theActivity of dopamine neuron and that of serotonin neurons are more closely associated with the drug's reinforcing property and the drug’s euphorigenic property, respectively.
Abstract: Heroin, nicotine, cocaine, and MDMA are abused by billions of people. They are believed to target midbrain dopamine neurons and/or serotonin neurons, but their effects on the dynamic neuronal activity remain unclear in behaving states. By combining cell-type-specific fiber photometry of Ca2+ signals and intravenous drug infusion, here we show that these four drugs of abuse profoundly modulate the activity of mouse midbrain dopamine neurons and serotonin neurons with distinct potency and kinetics. Heroin strongly activates dopamine neurons, and only excites serotonin neurons at higher doses. Nicotine activates dopamine neurons in merely a few seconds, but produces minimal effects on serotonin neurons. Cocaine and MDMA cause long-lasting suppression of both dopamine neurons and serotonin neurons, although MDMA inhibits serotonin neurons more profoundly. Moreover, these inhibitory effects are mediated through the activity of dopamine and serotonin autoreceptors. These results suggest that the activity of dopamine neurons and that of serotonin neurons are more closely associated with the drug's reinforcing property and the drug's euphorigenic property, respectively. This study also shows that our methodology may facilitate further in-vivo interrogation of neural dynamics using animal models of drug addiction.

Journal ArticleDOI
TL;DR: This study developed a new approach that programs both NHEJ and HDR pathways with CRISPR activation and interference (CRISPRa/i) to achieve significantly enhanced HDR efficiency of CRISpr-mediated gene editing.
Abstract: CRISPR systems have been proven as versatile tools for site-specific genome engineering in mammalian species. During the gene editing processes, these RNA-guide nucleases introduce DNA double strand breaks (DSBs), in which non-homologous DNA end joining (NHEJ) dominates the DNA repair pathway, limiting the efficiency of homology-directed repair (HDR), the alternative pathway essential for precise gene targeting. Multiple approaches have been developed to enhance HDR, including chemical compound or RNA interference-mediated inhibition of NHEJ factors, small molecule activation of HDR enzymes, or cell cycle timed delivery of CRISPR complex. However, these approaches face multiple challenges, yet have moderate or variable effects. Here we developed a new approach that programs both NHEJ and HDR pathways with CRISPR activation and interference (CRISPRa/i) to achieve significantly enhanced HDR efficiency of CRISPR-mediated gene editing. The manipulation of NHEJ and HDR pathway components, such as CtIP, CDK1, KU70, KU80, and LIG4, was mediated by catalytically dead guide RNAs (dgRNAs), thus relying on only a single catalytically active Cas9 to perform both CRISPRa/i and precise gene editing. While reprogramming of most DNA repair factors or their combinations tested enhanced HDR efficiency, simultaneously activating CDK1 and repressing KU80 has the strongest effect with increased HDR rate upto an order of magnitude. Doxycycline-induced dgRNA-based CRISPRa/i programming of DNA repair enzymes, as well as viral packaging enabled flexible and tunable HDR enhancement for broader applicability in mammalian cells. Our study provides an effective, flexible, and potentially safer strategy to enhance precise genome modifications, which might broadly impact human gene editing and therapy.

Journal ArticleDOI
TL;DR: A comprehensive map of changes in circRNA expression in rhesus macaque brain in two age groups from adult (10 y) to aged (20’y) periods is explored to reveal insights into a potentially circRNA-mediated regulatory mechanism underlying the biology of brain aging.
Abstract: The abundance and function of circular RNAs (circRNAs) in mammalian brain have been reported, but their alterations in the biology of brain aging remain elusive. Here, using deep RNA profiling with linear RNA digestion by RNase R we explored a comprehensive map of changes in circRNA expression in rhesus macaque (macaca mulatta) brain in two age groups from adult (10 y) to aged (20 y) periods. Total 17,050 well expressed, stable circRNAs were identified. Cluster analysis reveals that dynamic changes in circRNA expression show the spatial-, sex- and age-biased specificities. On the basis of separate profiling of the RNAs, age-related circRNAs show differential correlation to host mRNA expression. Furthermore, two voltage-dependent L- and R-type calcium channel gene-derived circCACNA2D1 and circCACNA1E negatively regulate their host mRNA expression. Our results demonstrate the power of changes in circRNA expression to reveal insights into a potentially circRNA-mediated regulatory mechanism underlying the biology of brain aging.

Journal ArticleDOI
TL;DR: The genetic analyses and structural studies strongly support the functional significance of CARK1 in positively regulating ABA signaling via phosphorylation on RCAR3/RCAR11 in Arabidopsis.
Abstract: The function of abscisic acid (ABA) is mediated by its receptors termed RCARs/PYR1/PYLs. Modulation of ABA signaling is vital for plant growth and development. The RCAR-PP2C-SnRK2 regulatory modules have been defined as the core components in ABA signaling. However, it is still not clear whether and how the ABA receptors could be modified at the initial post-translational stage to fine-tune ABA transduction pathway. Here we identify and characterize the putative receptor-like cytoplasmic kinase (RLCK) in Arabidopsis named CARK1, which interacts with RCAR3 (PYL8) and RCAR11 (PYR1) in the manner of phosphorylation. Structural studies of CARK1 revealed the critical active site, N204, which accounts for the kinase activity and the direct interaction with RCAR3/RCAR11. CARK1 phosphorylates RCAR3/RCAR11 at one conserved threonine site, T77/T78. Our genetic analyses further demonstrated that CARK1 positively regulates ABA-mediated physiological responses and overexpression of CARK1 in Arabidopsis distinctly promotes the drought resistance. Moreover, the phosphor-mimic form of RCAR11 in the cark1 mutant is able to functionally complement the ABA sensitivity. CARK1 positively regulates ABA-responsive gene expression and enhances RCAR3/RCAR11’s inhibition to Clade A PP2C. Taken together, our studies strongly support the functional significance of CARK1 in positively regulating ABA signaling via phosphorylation on RCAR3/RCAR11 in Arabidopsis.

Journal ArticleDOI
TL;DR: It is shown that the dynamics of DNA methylation in functional elements are conserved between humans and mice during early embryogenesis, except for satellite repeats, and the hypothesis thatDNA methylation plays important roles during mammalian development is supported.
Abstract: DNA methylation plays important roles during development. However, the DNA methylation reprogramming of functional elements has not been fully investigated during mammalian embryonic development. Herein, using our modified MethylC-Seq library generation method and published post-bisulphite adapter-tagging (PBAT) method, we generated genome-wide DNA methylomes of human gametes and early embryos at single-base resolution and compared them with mouse methylomes. We showed that the dynamics of DNA methylation in functional elements are conserved between humans and mice during early embryogenesis, except for satellite repeats. We further found that oocyte-specific hypomethylated promoters usually exhibit low CpG densities. Genes with oocyte-specific hypomethylated promoters generally show oocyte-specific hypomethylated genic and intergenic regions, and these hypomethylated regions contribute to the hypomethylation pattern of mammalian oocytes. Furthermore, hypomethylated genic regions with low CG densities correlate with gene silencing in oocytes, whereas hypomethylated genic regions with high CG densities correspond to high gene expression. We further show that methylation reprogramming of enhancers during early embryogenesis is highly associated with the development of almost all human organs. Our data support the hypothesis that DNA methylation plays important roles during mammalian development.

Journal ArticleDOI
TL;DR: It is shown that ZikV infection of embryos at the later stage of development causes severe microcephaly after birth and a single intraperitoneal injection of pregnant mice with a human monoclonal neutralizing antibody provides full protection against ZIKV infection and its associated damages in the developing fetuses.
Abstract: The causal link between Zika virus (ZIKV) infection and microcephaly has raised alarm worldwide. Microglial hyperplasia, reactive gliosis, and myelination delay have been reported in ZIKV-infected microcephalic fetuses. However, whether and how ZIKV infection affects glial cell development remain unclear. Here we show that ZIKV infection of embryos at the later stage of development causes severe microcephaly after birth. ZIKV infects the glial progenitors during brain development. Specifically, ZIKV infection disturbs the proliferation and differentiation of the oligodendrocyte progenitor cells and leads to the abolishment of oligodendrocyte development. More importantly, a single intraperitoneal injection of pregnant mice with a human monoclonal neutralizing antibody provides full protection against ZIKV infection and its associated damages in the developing fetuses. Our results not only provide more insights into the pathogenesis of ZIKV infection, but also present a new model for the preclinical test of prophylactic and therapeutic agents against ZIKV infection.

Journal ArticleDOI
TL;DR: This study highlights how control of transcriptional identity of the maternal transcriptome by the RNA-binding protein SRSF3 is essential to the development of fertilized-competent oocytes.
Abstract: The RNA-binding protein SRSF3 (also known as SRp20) has critical roles in the regulation of pre-mRNA splicing. Zygotic knockout of Srsf3 results in embryo arrest at the blastocyst stage. However, SRSF3 is also present in oocytes, suggesting that it might be critical as a maternally inherited factor. Here we identify SRSF3 as an essential regulator of alternative splicing and of transposable elements to maintain transcriptome integrity in mouse oocyte. Using 3D time-lapse confocal live imaging, we show that conditional deletion of Srsf3 in fully grown germinal vesicle oocytes substantially compromises the capacity of germinal vesicle breakdown (GVBD), and consequently entry into meiosis. By combining single cell RNA-seq, and oocyte micromanipulation with steric blocking antisense oligonucleotides and RNAse-H inducing gapmers, we found that the GVBD defect in mutant oocytes is due to both aberrant alternative splicing and derepression of B2 SINE transposable elements. Together, our study highlights how control of transcriptional identity of the maternal transcriptome by the RNA-binding protein SRSF3 is essential to the development of fertilized-competent oocytes.

Journal ArticleDOI
TL;DR: It is shown that coordination between Wnt and BMP signaling activity is necessary and sufficient to maintain Lgr5+ ISCs self-renewal and set up a convenient and economical culture system for their in vitro expansion.
Abstract: Lgr5+ intestinal stem cells (ISCs) drive the fast renewal of intestinal epithelium. Several signaling pathways have been shown to regulate ISC fates. However, it is unclear what are the essential signals to sustain the ISC self-renewal. Here we show that coordination between Wnt and BMP signaling activity is necessary and sufficient to maintain Lgr5+ ISCs self-renewal. The key function of R-spondin1 is to achieve a high activity of Wnt signaling in the organoid culture. Using the GSK3 inhibitor CHIR-99021 and the BMP type I receptor inhibitor LDN-193189, we can maintain Lgr5+ ISCs without growth factors in vitro. Our results define the basic signaling pathways sustaining Lgr5+ ISCs and set up a convenient and economical culture system for their in vitro expansion. This work also set up an example for growth factor-free culture of other adult stem cells.

Journal ArticleDOI
TL;DR: This study identifies a novel mechanism by which the FGF-2 and PDGF-BB collaboratively modulate perivascular cell coverage in tumor vessels, thus providing mechanistic insights of pericyte–endothelial cell interactions in TME and conceptual implications for treatment of cancers and other diseases by targeting the F GF-2–FGFR-pericyte axis.
Abstract: Perivascular cells are important cellular components in the tumor microenvironment (TME) and they modulate vascular integrity, remodeling, stability, and functions. Here we show using mice models that FGF-2 is a potent pericyte-stimulating factor in tumors. Mechanistically, FGF-2 binds to FGFR2 to stimulate pericyte proliferation and orchestrates the PDGFRβ signaling for vascular recruitment. FGF-2 sensitizes the PDGFRβ signaling through increasing PDGFRβ levels in pericytes. To ensure activation of PDGFRβ, the FGF-2-FGFR1-siganling induces PDGF-BB and PDGF-DD, two ligands for PDGFRβ, in angiogenic endothelial cells. Thus, FGF-2 directly and indirectly stimulates pericyte proliferation and recruitment by modulating the PDGF-PDGFRβ signaling. Our study identifies a novel mechanism by which the FGF-2 and PDGF-BB collaboratively modulate perivascular cell coverage in tumor vessels, thus providing mechanistic insights of pericyte-endothelial cell interactions in TME and conceptual implications for treatment of cancers and other diseases by targeting the FGF-2-FGFR-pericyte axis.

Journal ArticleDOI
Yuan Liu1, Zhen Qi1, Xintong Li1, Yanan Du1, Ye-Guang Chen1 
TL;DR: A bona fide 2D monolayer culture system to study Lgr5 ISCs and facilitate drug screening is established and the addition of blebbistatin greatly enhanced the attachment and growth of intestinal epithelial cells on Matrigel-coated plate.
Abstract: Dear Editor, The self-renewing intestinal epithelium is functionally organized into proliferating crypts and differentiating villus. At the bottom of the crypts, Lgr5 intestinal stem cells (ISCs) reside between terminally differentiated Paneth cells and actively drive the self-renewal of intestinal epithelium . The balance between proliferation and differentiation of Lgr5 ISCs is critical for the intestinal homeostatic maintenance. The establishment of the three-dimensional (3D) self-renewing organoid culture system in Matrigel supplemented with the growth factors EGF, Noggin and R-spondin (ENR) provides an ideal system to dissect how stem cells integrate multiple signals to maintain stemness and undergo malignant transformation. However, the 3D geometry nature of organoids prevents visual tracing of stem cells and challenges the dissection of interaction between stem cells and niche cells with microscopy. Much effort has been made to establish two-dimensional (2D) culture of intestinal epithelial cells, but whether these systems are suitable for adult Lgr5 stem cell study remains elusive. Thus, it would be of great value to establish a bona fide 2D monolayer culture system to study Lgr5 ISCs and facilitate drug screening. Also, it is interesting to determine whether Lgr5 cells are able to maintain stem cell activity on monolayer without the curvature structure. To establish a 2D monolayer culture system, we first explored whether Lgr5 ISCs could survive and maintain stemness on a matrix-coated plate. Isolated intestinal crypts from Lgr5-GFP-IRES-CreERT2 mice were resuspended in the ENR-containing organoid culture medium and seeded on collagen Ior Matrigel-coated plates with or without the non-muscle myosin IIA inhibitor blebbistatin as our previous work showed that blebbistatin could significantly improve the survival of Lgr5 ISCs and the growth of organoids. Although a few cells survived in the absence of blebbistatin, the addition of blebbistatin greatly enhanced the attachment and growth of intestinal epithelial cells on Matrigel-coated plate, much better than Y-27632 (Supplementary Fig. S1A), and supported the survival and growth of Lgr5 ISCs (Fig. 1a). However, no Lgr5 ISCs were observed in the collagen Icoated plates even in the presence of blebbistatin (data not shown). To examine whether uniform thickness would improve the growth of Lgr5 ISCs in 2D culture, we developed a novel method to generate a thin layer of Matrigel with uniform thickness on glass sheets based on our previous work. Briefly, a single layer of Matrigel was formed between a pre-treated coverslip and a hydrophobic glass slide (see Supplementary Methods), and the thickness can be easily controlled by Matrigel volume and coverslip dimension. We found that the 10 μm-thick Matrigel best supported the growth of Lgr5 ISC monolayer, whereas thicker Matrigel layer (50 μm) allowed the formation of an organoid-like 3D structure (Supplementary Fig. S1B). Thinner Matrigel layers such as 5 μm could still support the growth of Lgr5 ISCs, but the efficiency was lower, similar to the Matrigel-coated culture. The bright-field microscopy revealed that the monolayer exhibited heterogeneity in both cell morphology and densities (Fig. 1a). Highly dense compartments with small sized cells were enriched with Lgr5 ISCs, which were surrounded by large differentiated cells. We confirmed the epithelium origin by staining of E-cadherin and ZO-1 and determined the monolayer nature by Z-stack modeling (Fig. 1b, c; Supplementary Fig. S2 and Movie). To better sustain Lgr5 ISCs on the 2D monolayer, we modified the culture medium with small molecules. EGF

Journal ArticleDOI
TL;DR: It is shown that Glioma Amplified Sequence 41 (Gas41), a shared subunit of the two H2A.Z-depositing complexes, functions as a reader of histone lysine acetylation and recruits Tip60/p400 and SRCAP to deposit H2.Z in the chromatin.
Abstract: The histone variant H2A.Z is essential for maintaining embryonic stem cell (ESC) identity in part by keeping developmental genes in a poised bivalent state. However, how H2A.Z is deposited into the bivalent domains remains unknown. In mammals, two chromatin remodeling complexes, Tip60/p400 and SRCAP, exchange the canonical histone H2A for H2A.Z in the chromatin. Here we show that Glioma Amplified Sequence 41 (Gas41), a shared subunit of the two H2A.Z-depositing complexes, functions as a reader of histone lysine acetylation and recruits Tip60/p400 and SRCAP to deposit H2A.Z into specific chromatin regions including bivalent domains. The YEATS domain of Gas41 bound to acetylated histone H3K27 and H3K14 both in vitro and in cells. The crystal structure of the Gas41 YEATS domain in complex with the H3K27ac peptide revealed that, similar to the AF9 and ENL YEATS domains, Gas41 YEATS forms a serine-lined aromatic cage for acetyllysine recognition. Consistently, mutations in the aromatic residues of the Gas41 YEATS domain abrogated the interaction. In mouse ESCs, knockdown of Gas41 led to flattened morphology of ESC colonies, as the result of derepression of differentiation genes. Importantly, the abnormal morphology was rescued by expressing wild-type Gas41, but not the YEATS domain mutated counterpart that does not recognize histone acetylation. Mechanically, we found that Gas41 depletion led to reduction of H2A.Z levels and a concomitant reduction of H3K27me3 levels on bivalent domains. Together, our study reveals an essential role of the Gas41 YEATS domain in linking histone acetylation to H2A.Z deposition and maintenance of ESC identity.

Journal ArticleDOI
TL;DR: It is demonstrated that Mtf2 is a critical epigenetic regulator of Wnt signaling during erythropoiesis and the role of polycomb accessory proteins in a tissue-specific context is recast.
Abstract: Polycomb repressive complex 2 (PRC2) accessory proteins play substoichiometric, tissue-specific roles to recruit PRC2 to specific genomic loci or increase enzymatic activity, while PRC2 core proteins are required for complex stability and global levels of trimethylation of histone 3 at lysine 27 (H3K27me3). Here, we demonstrate a role for the classical PRC2 accessory protein Mtf2/Pcl2 in the hematopoietic system that is more akin to that of a core PRC2 protein. Mtf2-/- erythroid progenitors demonstrate markedly decreased core PRC2 protein levels and a global loss of H3K27me3 at promoter-proximal regions. The resulting de-repression of transcriptional and signaling networks blocks definitive erythroid development, culminating in Mtf2-/- embryos dying by e15.5 due to severe anemia. Gene regulatory network (GRN) analysis demonstrated Mtf2 directly regulates Wnt signaling in erythroblasts, leading to activated canonical Wnt signaling in Mtf2-deficient erythroblasts, while chemical inhibition of canonical Wnt signaling rescued Mtf2-deficient erythroblast differentiation in vitro. Using a combination of in vitro, in vivo and systems analyses, we demonstrate that Mtf2 is a critical epigenetic regulator of Wnt signaling during erythropoiesis and recast the role of polycomb accessory proteins in a tissue-specific context.

Journal ArticleDOI
TL;DR: It is demonstrated that insufficient DNA repair enzyme ATM leads to increased DNA damage and renders HCV T cells prone to apoptotic death, which contribute to the loss of naive T cells in HCV infection, providing a new strategy to improve immunotherapy and vaccine responses against human viral diseases.
Abstract: T cells have a crucial role in viral clearance and vaccine response; however, the mechanisms regulating their responses to viral infections or vaccinations remain elusive. In this study, we investigated T-cell homeostasis, apoptosis, DNA damage, and repair machineries in a large cohort of subjects with hepatitis C virus (HCV) infection. We found that naive CD4 T cells in chronically HCV-infected individuals (HCV T cells) were significantly reduced compared with age-matched healthy subjects. In addition, HCV T cells were prone to apoptosis and DNA damage, as evidenced by increased 8-oxoguanine expression and γH2AX/53BP1-formed DNA damage foci-hallmarks of DNA damage responses. Mechanistically, the activation of DNA repair enzyme ataxia telangiectasia mutated (ATM) was dampened in HCV T cells. ATM activation was also diminished in healthy T cells exposed to ATM inhibitor or to HCV (core protein) that inhibits the phosphoinositide 3 kinase pathway, mimicking the biological effects in HCV T cells. Importantly, ectopic expression of ATM was sufficient to repair the DNA damage, survival deficit, and cell dysfunctions in HCV T cells. Our results demonstrate that insufficient DNA repair enzyme ATM leads to increased DNA damage and renders HCV T cells prone to apoptotic death, which contribute to the loss of naive T cells in HCV infection. Our study reveals a novel mechanism for T-cell dysregulation and viral persistence, providing a new strategy to improve immunotherapy and vaccine responses against human viral diseases.

Journal ArticleDOI
TL;DR: This study shows that BMSCs derived from chronic myelomonocytic leukemia patients had reduced expression of ASXL1, which impaired the maintaining cord blood CD34+ cell colony-forming capacity with a myeloid differentiation bias, and provides mechanistic insight into the function of Asxl1 in the niche to maintain normal hematopoiesis.
Abstract: Somatic or de novo mutations of Additional sex combs-like 1 (ASXL1) frequently occur in patients with myeloid malignancies or Bohring-Opitz syndrome, respectively. We have reported that global loss of Asxl1 leads to the development of myeloid malignancies and impairs bone marrow stromal cell (BMSC) fates in mice. However, the impact of Asxl1 deletion in the BM niche on hematopoiesis remains unclear. Here, we showed that BMSCs derived from chronic myelomonocytic leukemia patients had reduced expression of ASXL1, which impaired the maintaining cord blood CD34+ cell colony-forming capacity with a myeloid differentiation bias. Furthermore, Asxl1 deletion in the mouse BMSCs altered hematopoietic stem and progenitor cell (HSC/HPC) pool and a preferential myeloid lineage increment. Immunoprecipitation and ChIP-seq analyses demonstrated a novel interaction of ASXL1 with the core subunits of RNA polymerase II (RNAPII) complex. Convergent analyses of RNA-seq and ChIP-seq data revealed that loss of Asxl1 deregulated RNAPII transcriptional function and altered the expression of genes critical for HSC/HPC maintenance, such as Vcam1. Altogether, our study provides a mechanistic insight into the function of ASXL1 in the niche to maintain normal hematopoiesis; and ASXL1 alteration in, at least, a subset of the niche cells induces myeloid differentiation bias, thus, contributes the progression of myeloid malignancies.