scispace - formally typeset
Search or ask a question

Showing papers in "Endocrine Reviews in 2008"


Journal ArticleDOI
TL;DR: The "metabolic syndrome" is a clustering of components that reflect overnutrition, sedentary lifestyles, and resultant excess adiposity that is associated with an approximate doubling of cardiovascular disease risk and a 5-fold increased risk for incident type 2 diabetes mellitus.
Abstract: The "metabolic syndrome" (MetS) is a clustering of components that reflect overnutrition, sedentary lifestyles, and resultant excess adiposity. The MetS includes the clustering of abdominal obesity, insulin resistance, dyslipidemia, and elevated blood pressure and is associated with other comorbidities including the prothrombotic state, proinflammatory state, nonalcoholic fatty liver disease, and reproductive disorders. Because the MetS is a cluster of different conditions, and not a single disease, the development of multiple concurrent definitions has resulted. The prevalence of the MetS is increasing to epidemic proportions not only in the United States and the remainder of the urbanized world but also in developing nations. Most studies show that the MetS is associated with an approximate doubling of cardiovascular disease risk and a 5-fold increased risk for incident type 2 diabetes mellitus. Although it is unclear whether there is a unifying pathophysiological mechanism resulting in the MetS, abdominal adiposity and insulin resistance appear to be central to the MetS and its individual components. Lifestyle modification and weight loss should, therefore, be at the core of treating or preventing the MetS and its components. In addition, there is a general consensus that other cardiac risk factors should be aggressively managed in individuals with the MetS. Finally, in 2008 the MetS is an evolving concept that continues to be data driven and evidence based with revisions forthcoming.

1,625 citations


Journal ArticleDOI
TL;DR: The precise mode of action and the full spectrum of activities of the vitamin D hormone, 1,25-dihydroxyvitamin D [1,25-(OH)(2)D], can now be better evaluated by critical analysis of mice with engineered deletion of the Vitamin D receptor (VDR).
Abstract: The vitamin D endocrine system is essential for calcium and bone homeostasis. The precise mode of action and the full spectrum of activities of the vitamin D hormone, 1,25-dihydroxyvitamin D [1,25-(OH)2D], can now be better evaluated by critical analysis of mice with engineered deletion of the vitamin D receptor (VDR). Absence of a functional VDR or the key activating enzyme, 25-OHD-1α-hydroxylase (CYP27B1), in mice creates a bone and growth plate phenotype that mimics humans with the same congenital disease or severe vitamin D deficiency. The intestine is the key target for the VDR because high calcium intake, or selective VDR rescue in the intestine, restores a normal bone and growth plate phenotype. The VDR is nearly ubiquitously expressed, and almost all cells respond to 1,25-(OH)2D exposure; about 3% of the mouse or human genome is regulated, directly and/or indirectly, by the vitamin D endocrine system, suggesting a more widespread function. VDR-deficient mice, but not vitamin D- or 1α-hydroxylase-deficient mice, and man develop total alopecia, indicating that the function of the VDR and its ligand is not fully overlapping. The immune system of VDR- or vitamin D-deficient mice is grossly normal but shows increased sensitivity to autoimmune diseases such as inflammatory bowel disease or type 1 diabetes after exposure to predisposing factors. VDR-deficient mice do not have a spontaneous increase in cancer but are more prone to oncogene- or chemocarcinogen-induced tumors. They also develop high renin hypertension, cardiac hypertrophy, and increased thrombogenicity. Vitamin D deficiency in humans is associated with increased prevalence of diseases, as predicted by the VDR null phenotype. Prospective vitamin D supplementation studies with multiple noncalcemic endpoints are needed to define the benefits of an optimal vitamin D status.

1,525 citations


Journal ArticleDOI
TL;DR: The mechanisms underlying tissue alterations in SCTD and the effects of replacement therapy on progression and tissue parameters are examined, and the issue of the need to treat slight thyroid hormone deficiency or excess in relation to the patient's age is addressed.
Abstract: Subclinical thyroid disease (SCTD) is defined as serum free T4 and free T3 levels within their respective reference ranges in the presence of abnormal serum TSH levels. SCTD is being diagnosed more frequently in clinical practice in young and middle-aged people as well as in the elderly. However, the clinical significance of subclinical thyroid dysfunction is much debated. Subclinical hyper- and hypothyroidism can have repercussions on the cardiovascular system and bone, as well as on other organs and systems. However, the treatment and management of SCTD and population screening are controversial despite the potential risk of progression to overt disease, and there is no consensus on the thyroid hormone and thyrotropin cutoff values at which treatment should be contemplated. Opinions differ regarding tissue effects, symptoms, signs, and cardiovascular risk. Here, we critically review the data on the prevalence and progression of SCTD, its tissue effects, and its prognostic implications. We also examine t...

1,166 citations


Journal ArticleDOI
TL;DR: Great strides have been made in understanding male reproductive physiology; the combined efforts of scientists, clinicians, industry and governmental funding agencies could make an effective, reversible, male contraceptive an option for family planning over the next decade.
Abstract: Despite significant advances in contraceptive options for women over the last 50 yr, world population continues to grow rapidly. Scientists and activists alike point to the devastating environmental impacts that population pressures have caused, including global warming from the developed world and hunger and disease in less developed areas. Moreover, almost half of all pregnancies are still unwanted or unplanned. Clearly, there is a need for expanded, reversible, contraceptive options. Multicultural surveys demonstrate the willingness of men to participate in contraception and their female partners to trust them to do so. Notwithstanding their paucity of options, male methods including vasectomy and condoms account for almost one third of contraceptive use in the United States and other countries. Recent international clinical research efforts have demonstrated high efficacy rates (90-95%) for hormonally based male contraceptives. Current barriers to expanded use include limited delivery methods and perceived regulatory obstacles, which stymie introduction to the marketplace. However, advances in oral and injectable androgen delivery are cause for optimism that these hurdles may be overcome. Nonhormonal methods, such as compounds that target sperm motility, are attractive in their theoretical promise of specificity for the reproductive tract. Gene and protein array technologies continue to identify potential targets for this approach. Such nonhormonal agents will likely reach clinical trials in the near future. Great strides have been made in understanding male reproductive physiology; the combined efforts of scientists, clinicians, industry and governmental funding agencies could make an effective, reversible, male contraceptive an option for family planning over the next decade.

1,121 citations


Journal ArticleDOI
TL;DR: This review addresses the transition from physiology to pathology, namely how and why the physiological UPR evolves to a proapoptotic ER stress response and which defenses are triggered by beta-cells against these challenges.
Abstract: Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a role in the pathogenesis of diabetes, contributing to pancreatic beta-cell loss and insulin resistance. Components of the unfolded protein response (UPR) play a dual role in beta-cells, acting as beneficial regulators under physiological conditions or as triggers of beta-cell dysfunction and apoptosis under situations of chronic stress. Novel findings suggest that "what makes a beta-cell a beta-cell", i.e., its enormous capacity to synthesize and secrete insulin, is also its Achilles heel, rendering it vulnerable to chronic high glucose and fatty acid exposure, agents that contribute to beta-cell failure in type 2 diabetes. In this review, we address the transition from physiology to pathology, namely how and why the physiological UPR evolves to a proapoptotic ER stress response and which defenses are triggered by beta-cells against these challenges. ER stress may also link obesity and insulin resistance in type 2 diabetes. High fat feeding and obesity induce ER stress in liver, which suppresses insulin signaling via c-Jun N-terminal kinase activation. In vitro data suggest that ER stress may also contribute to cytokine-induced beta-cell death. Thus, the cytokines IL-1beta and interferon-gamma, putative mediators of beta-cell loss in type 1 diabetes, induce severe ER stress through, respectively, NO-mediated depletion of ER calcium and inhibition of ER chaperones, thus hampering beta-cell defenses and amplifying the proapoptotic pathways. A better understanding of the pathways regulating ER stress in beta-cells may be instrumental for the design of novel therapies to prevent beta-cell loss in diabetes.

1,063 citations


Journal ArticleDOI
TL;DR: The role of glucolipotoxicity and lipotoxicity in the natural history of β-cell compensation, decompensation, and failure during the course of type 2 diabetes is defined.
Abstract: Glucotoxicity, lipotoxicity, and glucolipotoxicity are secondary phenomena that are proposed to play a role in all forms of type 2 diabetes. The underlying concept is that once the primary pathogenesis of diabetes is established, probably involving both genetic and environmental forces, hyperglycemia and very commonly hyperlipidemia ensue and thereafter exert additional damaging or toxic effects on the β-cell. In addition to their contribution to the deterioration of β-cell function after the onset of the disease, elevations of plasma fatty acid levels that often accompany insulin resistance may, as glucose levels begin to rise outside of the normal range, also play a pathogenic role in the early stages of the disease. Because hyperglycemia is a prerequisite for lipotoxicity to occur, the term glucolipotoxicity, rather than lipotoxicity, is more appropriate to describe deleterious effects of lipids on β-cell function. In vitro and in vivo evidence supporting the concept of glucotoxicity is presented first, as well as a description of the underlying mechanisms with an emphasis on the role of oxidative stress. Second, we discuss the functional manifestations of glucolipotoxicity on insulin secretion, insulin gene expression, and β-cell death, and the role of glucose in the mechanisms of glucolipotoxicity. Finally, we attempt to define the role of these phenomena in the natural history of β-cell compensation, decompensation, and failure during the course of type 2 diabetes.

909 citations


Journal ArticleDOI
TL;DR: GH and IGF-I secretion are decreased in aging individuals, and abnormalities in the GH/IGF-I axis play a role in the pathogenesis of the osteoporosis of anorexia nervosa and after glucocorticoid exposure.
Abstract: GH and IGF-I are important regulators of bone homeostasis and are central to the achievement of normal longitudinal bone growth and bone mass. Although GH may act directly on skeletal cells, most of its effects are mediated by IGF-I, which is present in the systemic circulation and is synthesized by peripheral tissues. The availability of IGF-I is regulated by IGF binding proteins. IGF-I enhances the differentiated function of the osteoblast and bone formation. Adult GH deficiency causes low bone turnover osteoporosis with high risk of vertebral and nonvertebral fractures, and the low bone mass can be partially reversed by GH replacement. Acromegaly is characterized by high bone turnover, which can lead to bone loss and vertebral fractures, particularly in patients with coexistent hypogonadism. GH and IGF-I secretion are decreased in aging individuals, and abnormalities in the GH/IGF-I axis play a role in the pathogenesis of the osteoporosis of anorexia nervosa and after glucocorticoid exposure.

772 citations


Journal ArticleDOI
TL;DR: Clinical trials are exploring the effects of denosumab, a fully human anti-RANKL antibody, on bone loss in patients with osteoporosis, bone metastasis, myeloma, and rheumatoid arthritis.
Abstract: Osteoclasts and osteoblasts dictate skeletal mass, structure, and strength via their respective roles in resorbing and forming bone Bone remodeling is a spatially coordinated lifelong process whereby old bone is removed by osteoclasts and replaced by bone-forming osteoblasts The refilling of resorption cavities is incomplete in many pathological states, which leads to a net loss of bone mass with each remodeling cycle Postmenopausal osteoporosis and other conditions are associated with an increased rate of bone remodeling, which leads to accelerated bone loss and increased risk of fracture Bone resorption is dependent on a cytokine known as RANKL (receptor activator of nuclear factor kappaB ligand), a TNF family member that is essential for osteoclast formation, activity, and survival in normal and pathological states of bone remodeling The catabolic effects of RANKL are prevented by osteoprotegerin (OPG), a TNF receptor family member that binds RANKL and thereby prevents activation of its single cognate receptor called RANK Osteoclast activity is likely to depend, at least in part, on the relative balance of RANKL and OPG Studies in numerous animal models of bone disease show that RANKL inhibition leads to marked suppression of bone resorption and increases in cortical and cancellous bone volume, density, and strength RANKL inhibitors also prevent focal bone loss that occurs in animal models of rheumatoid arthritis and bone metastasis Clinical trials are exploring the effects of denosumab, a fully human anti-RANKL antibody, on bone loss in patients with osteoporosis, bone metastasis, myeloma, and rheumatoid arthritis

735 citations


Journal ArticleDOI
TL;DR: More needs to be understood about the mechanisms and natural history of this complication in order to develop strategies for prevention and treatment of cognitive dysfunction in patients with diabetes.
Abstract: The deleterious effects of diabetes mellitus on the retinal, renal, cardiovascular, and peripheral nervous systems are widely acknowledged. Less attention has been given to the effect of diabetes on cognitive function. Both type 1 and type 2 diabetes mellitus have been associated with reduced performance on numerous domains of cognitive function. The exact pathophysiology of cognitive dysfunction in diabetes is not completely understood, but it is likely that hyperglycemia, vascular disease, hypoglycemia, and insulin resistance play significant roles. Modalities to study the effect of diabetes on the brain have evolved over the years, including neurocognitive testing, evoked response potentials, and magnetic resonance imaging. Although much insightful research has examined cognitive dysfunction in patients with diabetes, more needs to be understood about the mechanisms and natural history of this complication in order to develop strategies for prevention and treatment.

717 citations


Journal ArticleDOI
TL;DR: It seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults.
Abstract: The iodothyronine deiodinases initiate or terminate thyroid hormone action and therefore are critical for the biological effects mediated by thyroid hormone. Over the years, research has focused on their role in preserving serum levels of the biologically active molecule T3 during iodine deficiency. More recently, a fascinating new role of these enzymes has been unveiled. The activating deiodinase (D2) and the inactivating deiodinase (D3) can locally increase or decrease thyroid hormone signaling in a tissue- and temporal-specific fashion, independent of changes in thyroid hormone serum concentrations. This mechanism is particularly relevant because deiodinase expression can be modulated by a wide variety of endogenous signaling molecules such as sonic hedgehog, nuclear factor-κB, growth factors, bile acids, hypoxia-inducible factor-1α, as well as a growing number of xenobiotic substances. In light of these findings, it seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults.

715 citations


Journal ArticleDOI
TL;DR: Emerging evidence to suggest that formation of intracellular IAPP oligomers may contribute to beta-cell loss in T2DM is discussed.
Abstract: Type 2 diabetes (T2DM) is characterized by insulin resistance, defective insulin secretion, loss of beta-cell mass with increased beta-cell apoptosis and islet amyloid. The islet amyloid is derived from islet amyloid polypeptide (IAPP, amylin), a protein coexpressed and cosecreted with insulin by pancreatic beta-cells. In common with other amyloidogenic proteins, IAPP has the propensity to form membrane permeant toxic oligomers. Accumulating evidence suggests that these toxic oligomers, rather than the extracellular amyloid form of these proteins, are responsible for loss of neurons in neurodegenerative diseases. In this review we discuss emerging evidence to suggest that formation of intracellular IAPP oligomers may contribute to beta-cell loss in T2DM. The accumulated evidence permits the amyloid hypothesis originally developed for neurodegenerative diseases to be reformulated as the toxic oligomer hypothesis. However, as in neurodegenerative diseases, it remains unclear exactly why amyloidogenic proteins form oligomers in vivo, what their exact structure is, and to what extent these oligomers play a primary or secondary role in the cytotoxicity in what are now often called unfolded protein diseases.

Journal ArticleDOI
TL;DR: The role of ceramide and other sphingolipid metabolites in insulin resistance, beta-cell failure, cardiomyopathy, and vascular dysfunction is reviewed, focusing on in vivo studies that identify enzymes controlling sphingoipid metabolism as therapeutic targets for combating metabolic disease.
Abstract: Obesity and dyslipidemia are risk factors for metabolic disorders including diabetes and cardiovascular disease. Sphingolipids such as ceramide and glucosylceramides, while being a relatively minor component of the lipid milieu in most tissues, may be among the most pathogenic lipids in the onset of the sequelae associated with excess adiposity. Circulating factors associated with obesity (e.g., saturated fatty acids, inflammatory cytokines) selectively induce enzymes that promote sphingolipid synthesis, and lipidomic profiling reveals relationships between tissue sphingolipid levels and certain metabolic diseases. Moreover, studies in cultured cells and isolated tissues implicate sphingolipids in certain cellular events associated with diabetes and cardiovascular disease, including insulin resistance, pancreatic β-cell failure, cardiomyopathy, and vascular dysfunction. However, definitive evidence that sphingolipids contribute to insulin resistance, diabetes, and atherosclerosis has come only recently, as researchers have found that pharmacological inhibition or genetic ablation of enzymes controlling sphingolipid synthesis in rodents ameliorates each of these conditions. Herein we will review the role of ceramide and other sphingolipid metabolites in insulin resistance, β-cell failure, cardiomyopathy, and vascular dysfunction, focusing on these in vivo studies that identify enzymes controlling sphingolipid metabolism as therapeutic targets for combating metabolic disease.

Journal ArticleDOI
TL;DR: Therapeutic interventions to prevent polypeptide-misfolding, oxidative damage, and/or UPR-induced cell death have the potential to improve beta-cell function and/ or survival in the treatment of diabetes.
Abstract: The endoplasmic reticulum (ER) is the entry site into the secretory pathway for newly synthesized proteins destined for the cell surface or released into the extracellular milieu. The study of protein folding and trafficking within the ER is an extremely active area of research that has provided novel insights into many disease processes. Cells have evolved mechanisms to modulate the capacity and quality of the ER protein-folding machinery to prevent the accumulation of unfolded or misfolded proteins. These signaling pathways are collectively termed the unfolded protein response (UPR). The UPR sensors signal a transcriptional response to expand the ER folding capacity, increase degredation of malfolded proteins, and limit the rate of mRNA translation to reduce the client protein load. Recent genetic and biochemical evidence in both humans and mice supports a requirement for the UPR to preserve ER homeostasis and prevent the β-cell failure that may be fundamental in the etiology of diabetes. Chronic or overwhelming ER stress stimuli associated with metabolic syndrome can disrupt protein folding in the ER, reduce insulin secretion, invoke oxidative stress, and activate cell death pathways. Therapeutic interventions to prevent polypeptide-misfolding, oxidative damage, and/or UPR-induced cell death have the potential to improve β-cell function and/or survival in the treatment of diabetes.

Journal ArticleDOI
TL;DR: Recent and rapid advances in understanding the functions of the ERRs in regulating bioenergetic pathways are reviewed, with an emphasis on their roles in the specification of energetic properties required for cell- and tissue-specific functions.
Abstract: Transcriptional control of cellular energy metabolic pathways is achieved by the coordinated action of numerous transcription factors and associated coregulators. Several members of the nuclear receptor superfamily have been shown to play important roles in this process because they can translate hormonal, nutrient, and metabolite signals into specific gene expression networks to satisfy energy demands in response to distinct physiological cues. Estrogen-related receptor (ERR) alpha, ERRbeta, and ERRgamma are nuclear receptors that have yet to be associated with a natural ligand and are thus considered as orphan receptors. However, the transcriptional activity of the ERRs is exquisitely sensitive to the presence of coregulatory proteins known to be essential for the control of energy homeostasis, and for all intents and purposes, these coregulators function as protein ligands for the ERRs. In particular, functional genomics and biochemical studies have shown that ERRalpha and ERRgamma operate as the primary conduits for the activity of members of the family of PGC-1 coactivators. As transcription factors, the ERRs control vast gene networks involved in all aspects of energy homeostasis, including fat and glucose metabolism as well as mitochondrial biogenesis and function. Phenotypic analyses of knockout mouse models have shown that all three ERRs are indispensable for proper development and/or survival of the organism when subjected to a variety of physiological challenges. The focus of this review is on the recent and rapid advances in understanding the functions of the ERRs in regulating bioenergetic pathways, with an emphasis on their roles in the specification of energetic properties required for cell- and tissue-specific functions.

Journal ArticleDOI
TL;DR: The aim of this review article is to summarize the current knowledge on mechanisms of resistance of breast cancer cells to endocrine therapies due to the crosstalk between the ER and the HER growth factor receptor signaling pathways and to explore new available therapeutic strategies that could prolong duration of response and circumvent endocrine resistant tumor growth.
Abstract: Breast cancer evolution and tumor progression are governed by the complex interactions between steroid receptor [estrogen receptor (ER) and progesterone receptor] and growth factor receptor signaling. In recent years, the field of cancer therapy has witnessed the emergence of multiple strategies targeting these specific cancer pathways and key molecules (ER and growth factor receptors) to arrest tumor growth and achieve tumor eradication; treatment success, however, has varied and both de novo (up front) and acquired resistance have proven a challenge. Recent studies of ER biology have revealed new insights into ER action in breast cancer and have highlighted the role of an intimate crosstalk between the ER and HER family signaling pathways as a fundamental contributor to the development of resistance to endocrine therapies against the ER pathway. The aim of this review article is to summarize the current knowledge on mechanisms of resistance of breast cancer cells to endocrine therapies due to the crosstalk between the ER and the HER growth factor receptor signaling pathways and to explore new available therapeutic strategies that could prolong duration of response and circumvent endocrine resistant tumor growth.

Journal ArticleDOI
TL;DR: The mechanisms involved in the pathogenesis of hepatic fat accumulation, particularly the roles of body fat distribution, nutrition, exercise, genetics, and gene-environment interaction are discussed.
Abstract: Type 2 diabetes and cardiovascular disease represent a serious threat to the health of the population worldwide. Although overall adiposity and particularly visceral adiposity are established risk factors for these diseases, in the recent years fatty liver emerged as an additional and independent factor. However, the pathophysiology of fat accumulation in the liver and the cross-talk of fatty liver with other tissues involved in metabolism in humans are not fully understood. Here we discuss the mechanisms involved in the pathogenesis of hepatic fat accumulation, particularly the roles of body fat distribution, nutrition, exercise, genetics, and gene-environment interaction. Furthermore, the effects of fatty liver on glucose and lipid metabolism, specifically via induction of subclinical inflammation and secretion of humoral factors, are highlighted. Finally, new aspects regarding the dissociation of fatty liver and insulin resistance are addressed.

Journal ArticleDOI
TL;DR: This review is meant to provide a broad overview of the many ways that bone and immune cells interact so that a better understanding of the role that each plays in the development and function of the other can develop.
Abstract: Bone and the immune system are both complex tissues that respectively regulate the skeleton and the body’s response to invading pathogens. It has now become clear that these organ systems often interact in their function. This is particularly true for the development of immune cells in the bone marrow and for the function of bone cells in health and disease. Because these two disciplines developed independently, investigators in each don’t always fully appreciate the significance that the other system has on the function of the tissue they are studying. This review is meant to provide a broad overview of the many ways that bone and immune cells interact so that a better understanding of the role that each plays in the development and function of the other can develop. It is hoped that an appreciation of the interactions of these two organ systems will lead to better therapeutics for diseases that affect either or both.

Journal ArticleDOI
TL;DR: There is sufficient disparity in the control of the production, distribution, and physiological functions of PRL among these species to warrant careful and judicial extrapolation to humans.
Abstract: Prolactin (PRL) is a 23-kDa protein hormone that binds to a single-span membrane receptor, a member of the cytokine receptor superfamily, and exerts its action via several interacting signaling pathways. PRL is a multifunctional hormone that affects multiple reproductive and metabolic functions and is also involved in tumorigenicity. In addition to being a classical pituitary hormone, PRL in humans is produced by many tissues throughout the body where it acts as a cytokine. The objective of this review is to compare and contrast multiple aspects of PRL, from structure to regulation, and from physiology to pathology in rats, mice, and humans. At each juncture, questions are raised whether, or to what extent, data from rodents are relevant to PRL homeostasis in humans. Most current knowledge on PRL has been obtained from studies with rats and, more recently, from the use of transgenic mice. Although this information is indispensable for understanding PRL in human health and disease, there is sufficient disparity in the control of the production, distribution, and physiological functions of PRL among these species to warrant careful and judicial extrapolation to humans.

Journal ArticleDOI
TL;DR: Overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Abstract: The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.

Journal ArticleDOI
TL;DR: It is substantiated that coregulators are broadly implicated in human pathological states and will be of growing future interest in clinical medicine.
Abstract: Nuclear receptor (NR) coregulators (coactivators and corepressors) are essential elements in regulating nuclear receptor-mediated transcription. In a little more than a decade since their discovery, these proteins have been studied mechanistically and reveal that the regulation of transcription is a highly controlled and complex process. Because of their central role in regulating NR-mediated transcription and in coordinating intercompartmental metabolic processes, disruptions in coregulator biology can lead to pathological states. To date, the extent to which they are involved in human disease has not been widely appreciated. In a complete literature survey, we have identified nearly 300 distinct coregulators, revealing that a great variety of enzymatic and regulatory capabilities exist for NRs to regulate transcription and other cellular events. Here, we substantiate that coregulators are broadly implicated in human pathological states and will be of growing future interest in clinical medicine.

Journal ArticleDOI
TL;DR: KdPT, a derivative of KPV corresponding to amino acids 193-195 of IL-1beta, is also emerging as a tripeptide with antiinflammatory effects, suitable for the future treatment of immune-mediated inflammatory skin and bowel disease, fibrosis, allergic and inflammatory lung disease, ocular inflammation, and arthritis.
Abstract: Alpha-MSH is a tridecapeptide derived from proopiomelanocortin. Many studies over the last few years have provided evidence that alpha-MSH has potent protective and antiinflammatory effects. These effects can be elicited via centrally expressed melanocortin receptors that orchestrate descending neurogenic antiinflammatory pathways. alpha-MSH can also exert antiinflammatory and protective effects on cells of the immune system and on peripheral nonimmune cell types expressing melanocortin receptors. At the molecular level, alpha-MSH affects various pathways implicated in regulation of inflammation and protection, i.e., nuclear factor-kappaB activation, expression of adhesion molecules and chemokine receptors, production of proinflammatory cytokines and mediators, IL-10 synthesis, T cell proliferation and activity, inflammatory cell migration, expression of antioxidative enzymes, and apoptosis. The antiinflammatory effects of alpha-MSH have been validated in animal models of experimentally induced fever; irritant and allergic contact dermatitis, vasculitis, and fibrosis; ocular, gastrointestinal, brain, and allergic airway inflammation; and arthritis, but also in models of organ injury. One obstacle limiting the use of alpha-MSH in inflammatory disorders is its pigmentary effect. Due to its preserved antiinflammatory effect but lack of pigmentary action, the C-terminal tripeptide of alpha-MSH, KPV, has been delineated as an alternative for antiinflammatory therapy. KdPT, a derivative of KPV corresponding to amino acids 193-195 of IL-1beta, is also emerging as a tripeptide with antiinflammatory effects. The physiochemical properties and expected low costs of production render both agents suitable for the future treatment of immune-mediated inflammatory skin and bowel disease, fibrosis, allergic and inflammatory lung disease, ocular inflammation, and arthritis.

Journal ArticleDOI
TL;DR: The evidence supporting the view that alterations in GL/FFA cycling are involved in the pathogenesis of "fatal" conditions such as obesity, type 2 diabetes, and cancer is discussed and the possible therapeutic implications of targeting this cycling are presented.
Abstract: Maintenance of body temperature is achieved partly by modulating lipolysis by a network of complex regulatory mechanisms. Lipolysis is an integral part of the glycerolipid/free fatty acid (GL/FFA) cycle, which is the focus of this review, and we discuss the significance of this pathway in the regulation of many physiological processes besides thermogenesis. GL/FFA cycle is referred to as a “futile” cycle because it involves continuous formation and hydrolysis of GL with the release of heat, at the expense of ATP. However, we present evidence underscoring the “vital” cellular signaling roles of the GL/FFA cycle for many biological processes. Probably because of its importance in many cellular functions, GL/FFA cycling is under stringent control and is organized as several composite short substrate/product cycles where forward and backward reactions are catalyzed by separate enzymes. We believe that the renaissance of the GL/FFA cycle is timely, considering the emerging view that many of the neutral lipids ...

Journal ArticleDOI
TL;DR: Environmental factors acting as endocrine disruptors of testicular descent might also contribute to the etiology of cryptorchidism and its increased incidence in recent years.
Abstract: Cryptorchidism is the most frequent congenital birth defect in male children (2-4% in full-term male births), and it has the potential to impact the health of the human male. In fact, although it is often considered a mild malformation, it represents the best-characterized risk factor for reduced fertility and testicular cancer. Furthermore, some reports have highlighted a significant increase in the prevalence of cryptorchidism over the last few decades. Etiology of cryptorchidism remains for the most part unknown, and cryptorchidism itself might be considered a complex disease. Major regulators of testicular descent from intraabdominal location into the bottom of the scrotum are the Leydig-cell-derived hormones testosterone and insulin-like factor 3. Research on possible genetic causes of cryptorchidism has increased recently. Abundant animal evidence supports a genetic cause, whereas the genetic contribution to human cryptorchidism is being elucidated only recently. Mutations in the gene for insulin-like factor 3 and its receptor and in the androgen receptor gene have been recognized as causes of cryptorchidism in some cases, but some chromosomal alterations, above all the Klinefelter syndrome, are also frequently involved. Environmental factors acting as endocrine disruptors of testicular descent might also contribute to the etiology of cryptorchidism and its increased incidence in recent years. Furthermore, polymorphisms in different genes have recently been investigated as contributing risk factors for cryptorchidism, alone or by influencing susceptibility to endocrine disruptors. Obviously, the interaction of environmental and genetic factors is fundamental, and many aspects have been clarified only recently.

Journal ArticleDOI
TL;DR: An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life, providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis.
Abstract: An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life. These studies are providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis. Neonatal diabetes is now understood to arise from mutations in genes that play critical roles in the development of the pancreas, of β-cell apoptosis and insulin processing, as well as the regulation of insulin release. For the basic researcher, this work is providing novel tools to explore fundamental molecular and cellular processes. For the clinician, these studies underscore the need to identify the genetic cause underlying each case. It is increasingly clear that the prognosis, therapeutic approach, and genetic counseling a physician provides must be tailored to a specific gene in order to provide the best medical care.

Journal ArticleDOI
TL;DR: Key analytical issues are to quantify the number, size, shape, and uniformity of pulses, nonpulsatile (basal) secretion, and elimination kinetics, and to evaluate regulation of the axis as a whole to reconstruct dose-response interactions without disrupting hormone connections.
Abstract: Endocrine glands communicate with remote target cells via a mixture of continuous and intermittent signal exchange. Continuous signaling allows slowly varying control, whereas intermittency permits large rapid adjustments. The control systems that mediate such homeostatic corrections operate in a species-, gender-, age-, and context-selective fashion. Significant progress has been made in understanding mechanisms of adaptive interglandular signaling in vivo. Principal goals are to understand the physiological origins, significance, and mechanisms of pulsatile hormone secretion. Key analytical issues are: 1) to quantify the number, size, shape, and uniformity of pulses, nonpulsatile (basal) secretion, and elimination kinetics; 2) to evaluate regulation of the axis as a whole; and 3) to reconstruct dose-response interactions without disrupting hormone connections. This review will focus on the motivations driving and the methodologies used for such analyses.

Journal ArticleDOI
TL;DR: All the joint genes for T1D and AITD identified so far are involved in immune regulation, specifically in the presentation of antigenic peptides to T cells, and gene-gene and genetic-epigenetic interactions most likely play a role in the shared genetic susceptibility.
Abstract: Type 1 diabetes (T1D) and autoimmune thyroid diseases (AITD) frequently occur together within families and in the same individual. The co-occurrence of T1D and AITD in the same patient is one of the variants of the autoimmune polyglandular syndrome type 3 [APS3 variant (APS3v)]. Epidemiological data point to a strong genetic influence on the shared susceptibility to T1D and AITD. Recently, significant progress has been made in our understanding of the genetic association between T1D and AITD. At least three genes have been confirmed as major joint susceptibility genes for T1D and AITD: human leukocyte antigen class II, cytotoxic T-lymphocyte antigen 4 (CTLA-4), and protein tyrosine phosphatase non-receptor type 22. Moreover, the first whole genome linkage study has been recently completed, and additional genes will soon be identified. Not unexpectedly, all the joint genes for T1D and AITD identified so far are involved in immune regulation, specifically in the presentation of antigenic peptides to T cells. One of the lessons learned from the analysis of the joint susceptibility genes for T1D and AITD is that subset analysis is a key to dissecting the etiology of complex diseases. One of the best demonstrations of the power of subset analysis is the CTLA-4 gene in T1D. Although CTLA-4 showed very weak association with T1D, when analyzed in the subset of patients with both T1D and AITD, the genetic effect of CTLA-4 was significantly stronger. Gene-gene and genetic-epigenetic interactions most likely play a role in the shared genetic susceptibility to T1D and AITD. Dissecting these mechanisms will lead to a better understanding of the etiology of T1D and AITD, as well as autoimmunity in general.

Journal ArticleDOI
TL;DR: The myostatin-null genotype produces "double muscling" in mice and livestock and was recently described in a child as mentioned in this paper, which could also have agricultural significance considering the potential benefits of enhancing muscle growth in clinical and agricultural settings.
Abstract: The discovery of myostatin and our introduction to the "Mighty Mouse" over a decade ago spurred both basic and applied research and impacted popular culture as well. The myostatin-null genotype produces "double muscling" in mice and livestock and was recently described in a child. The field's rapid growth is by no means surprising considering the potential benefits of enhancing muscle growth in clinical and agricultural settings. Indeed, several recent studies suggest that blocking myostatin's inhibitory effects could improve the clinical treatment of several muscle growth disorders, whereas comparative studies suggest that these actions are at least partly conserved. Thus, neutralizing myostatin's effects could also have agricultural significance. Extrapolating between studies that use different vertebrate models, particularly fish and mammals, is somewhat confusing because whole genome duplication events have resulted in the production and retention of up to four unique myostatin genes in some fish species. Such comparisons, however, suggest that myostatin's actions may not be limited to skeletal muscle per se, but may additionally influence other tissues including cardiac muscle, adipocytes, and the brain. Thus, therapeutic intervention in the clinic or on the farm must consider the potential of alternative side effects that could impact these or other tissues. In addition, the presence of multiple and actively diversifying myostatin genes in most fish species provides a unique opportunity to study adaptive molecular evolution. It may also provide insight into myostatin's nonmuscle actions as results from these and other comparative studies gain visibility in biomedical fields.

Journal ArticleDOI
TL;DR: The aim of this chapter is to present an overview of early and recent key observations from groups as well as other laboratories that serve to illuminate the road from concept to clinical translation.
Abstract: The tale of cytokines and the beta-cell is a long story, starting with in vitro discovery in 1984, evolving via descriptive and phenomenological studies to detailed mapping of the signalling pathways, gene- and protein expression patterns, molecular and biochemical effector mechanisms to in vivo studies in spontaneously diabetic and transgenic animal models. Only very recently have steps been taken to translate the accumulating compelling preclinical data into clinical trials. The aim of this chapter is to present an overview of early and recent key observations from our own groups as well as other laboratories that serve to illuminate the road from concept to clinical translation.

Journal ArticleDOI
TL;DR: Whereas common variants in the MODY genes contribute very modestly to type 2 diabetes susceptibility in adults, major findings emerging from the advent of genome-wide association studies will deliver an increasing number of genes and new pathways for the pathological events of the disease.
Abstract: Most valuable breakthroughs in the genetics of type 2 diabetes for the past two decades have arisen from candidate gene studies and familial linkage analysis of maturity-onset diabetes of the young (MODY), an autosomal dominant form of diabetes typically occurring before 25 years of age caused by primary insulin secretion defects. Despite its low prevalence, MODY is not a single entity but presents genetic, metabolic and clinical heterogeneity. MODY can result from mutations in at least six different genes encoding the glucose sensor enzyme glucokinase and transcription factors that participate in a regulatory network essential for adult β-cell function. Additional genes have been described in other discrete phenotypes or syndromic forms of diabetes. Whereas common variants in the MODY genes contribute very modestly to type 2 diabetes susceptibility in adults, major findings emerging from the advent of genome-wide association studies will deliver an increasing number of genes and new pathways for the path...

Journal ArticleDOI
TL;DR: There is evidence that a long-term increase in ald testosterone production from early life is determined by an interaction of genetic and environmental factors, leading to the eventual phenotypes of aldosterone-associated hypertension and cardiovascular damage in middle age and beyond.
Abstract: Up to 15% of patients with essential hypertension have inappropriate regulation of aldosterone; although only a minority have distinct adrenal tumors, recent evidence shows that mineralocorticoid receptor activation contributes to the age-related blood pressure rise and illustrates the importance of aldosterone in determining cardiovascular risk. Aldosterone also has a major role in progression and outcome of ischemic heart disease. These data highlight the need to understand better the regulation of aldosterone synthesis and its action. Aldosterone effects are mediated mainly through classical nuclear receptors that alter gene transcription. In classic epithelial target tissues, signaling mechanisms are relatively well defined. However, aldosterone has major effects in nonepithelial tissues that include increased synthesis of proinflammatory molecules and reactive oxygen species; it remains unclear how these effects are controlled and how receptor specificity is maintained. Variation in aldosterone production reflects interaction of genetic and environmental factors. Although the environmental factors are well understood, the genetic control of aldosterone synthesis is still the subject of debate. Aldosterone synthase (encoded by the CYP11B2 gene) controls conversion of deoxycorticosterone to aldosterone. Polymorphic variation in CYP11B2 is associated with increased risk of hypertension, but the molecular mechanism that accounts for this is not known. Altered 11beta-hydroxylase efficiency (conversion of deoxycortisol to cortisol) as a consequence of variation in the neighboring gene (CYP11B1) may be important in contributing to altered control of aldosterone synthesis, so that the risk of hypertension may reflect a digenic effect, a concept that is discussed further. There is evidence that a long-term increase in aldosterone production from early life is determined by an interaction of genetic and environmental factors, leading to the eventual phenotypes of aldosterone-associated hypertension and cardiovascular damage in middle age and beyond. The importance of aldosterone has generated interest in its therapeutic modulation. Disadvantages associated with spironolactone (altered libido, gynecomastia) have led to a search for alternative mineralocorticoid receptor antagonists. Of these, eplerenone has been shown to reduce cardiovascular risk after myocardial infarction. The benefits and disadvantages of this therapeutic approach are discussed.