scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cell Science in 2013"


Journal ArticleDOI
TL;DR: The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA and highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.
Abstract: Exosomes are extracellular vesicles (EVs) secreted upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. The mechanisms involved in their biogenesis have not yet been fully identified although they could be used to modulate exosome formation and therefore are a promising tool in understanding exosome functions. We have performed an RNA interference screen targeting 23 components of the endosomal sorting complex required for transport (ESCRT) machinery and associated proteins in MHC class II (MHC II)-expressing HeLa-CIITA cells. Silencing of HRS, STAM1 or TSG101 reduced the secretion of EV-associated CD63 and MHC II but each gene altered differently the size and/or protein composition of secreted EVs, as quantified by immuno-electron microscopy. By contrast, depletion of VPS4B augmented this secretion while not altering the features of EVs. For several other ESCRT subunits, it was not possible to draw any conclusions about their involvement in exosome biogenesis from the screen. Interestingly, silencing of ALIX increased MHC II exosomal secretion, as a result of an overall increase in intracellular MHC II protein and mRNA levels. In human dendritic cells (DCs), ALIX depletion also increased MHC II in the cells, but not in the released CD63-positive EVs. Such differences could be attributed to a greater heterogeneity in size, and higher MHC II and lower CD63 levels in vesicles recovered from DCs as compared with HeLa-CIITA. The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA. They also highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.

1,102 citations


Journal ArticleDOI
TL;DR: Comment on new insights on the interactions of LIR-containing proteins with members of the ATG8 protein family on the interaction of autophagy receptors to LC3-interacting region proteins anchored in the phagophore membrane.
Abstract: (Macro)autophagy is a fundamental degradation process for macromolecules and organelles of vital importance for cell and tissue homeostasis. Autophagy research has gained a strong momentum in recent years because of its relevance to cancer, neurodegenerative diseases, muscular dystrophy, lipid storage disorders, development, ageing and innate immunity. Autophagy has traditionally been thought of as a bulk degradation process that is mobilized upon nutritional starvation to replenish the cell with building blocks and keep up with the energy demand. This view has recently changed dramatically following an array of papers describing various forms of selective autophagy. A main driving force has been the discovery of specific autophagy receptors that sequester cargo into forming autophagosomes (phagophores). At the heart of this selectivity lies the LC3-interacting region (LIR) motif, which ensures the targeting of autophagy receptors to LC3 (or other ATG8 family proteins) anchored in the phagophore membrane. LIR-containing proteins include cargo receptors, members of the basal autophagy apparatus, proteins associated with vesicles and of their transport, Rab GTPase-activating proteins (GAPs) and specific signaling proteins that are degraded by selective autophagy. Here, we comment on these new insights and focus on the interactions of LIR-containing proteins with members of the ATG8 protein family.

690 citations


Journal ArticleDOI
TL;DR: The connections between mTORC1 and gene transcription are reviewed by focusing on its impact in regulating the activation of specific transcription factors including including STAT3, SREBPs, PParγ, PPARα, HIF1α, YY1–PGC1α and TFEB.
Abstract: The mechanistic (or mammalian) target of rapamycin (mTOR) is a kinase that regulates key cellular functions linked to the promotion of cell growth and metabolism. This kinase, which is part of two protein complexes termed mTOR complex 1 (mTORC1) and 2 (mTORC2), has a fundamental role in coordinating anabolic and catabolic processes in response to growth factors and nutrients. Of the two mTOR complexes, mTORC1 is by far the best characterized. When active, mTORC1 triggers cell growth and proliferation by promoting protein synthesis, lipid biogenesis, and metabolism, and by reducing autophagy. The fact that mTORC1 deregulation is associated with several human diseases, such as type 2 diabetes, cancer, obesity and neurodegeneration, highlights its importance in the maintenance of cellular homeostasis. Over the last years, several groups observed that mTORC1 inhibition, in addition to reducing protein synthesis, deeply affects gene transcription. Here, we review the connections between mTORC1 and gene transcription by focusing on its impact in regulating the activation of specific transcription factors including including STAT3, SREBPs, PPARγ, PPARα, HIF1α, YY1–PGC1α and TFEB. We also discuss the importance of these transcription factors in mediating the effects of mTORC1 on various cellular processes in physiological and pathological contexts.

561 citations


Journal ArticleDOI
TL;DR: The mechanisms by which tumour cells control the cross-regulation between dynamic E-cadherin- mediated cell–cell adhesions and integrin-mediated cell–matrix contacts, which govern the invasive and metastatic potential of tumours are reviewed.
Abstract: E-cadherin is a single-pass transmembrane protein that mediates homophilic cell-cell interactions. Tumour progression is often associated with the loss of E-cadherin function and the transition to a more motile and invasive phenotype. This requires the coordinated regulation of both E-cadherin-mediated cell-cell adhesions and integrin-mediated adhesions that contact the surrounding extracellular matrix (ECM). Regulation of both types of adhesion is dynamic as cells respond to external cues from the tumour microenvironment that regulate polarity, directional migration and invasion. Here, we review the mechanisms by which tumour cells control the cross-regulation between dynamic E-cadherin-mediated cell-cell adhesions and integrin-mediated cell-matrix contacts, which govern the invasive and metastatic potential of tumours. In particular, we will discuss the role of the adhesion-linked kinases Src, focal adhesion kinase (FAK) and integrin-linked kinase (ILK), and the Rho family of GTPases.

535 citations


Journal ArticleDOI
TL;DR: Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules, which leads to lysosomal membrane permeabilization.
Abstract: Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream mechanisms that lead to lysosomal membrane permeabilization.

474 citations


Journal ArticleDOI
TL;DR: The molecular biology of Notch signaling, its role in development and its relevance to disease are summarized.
Abstract: Cell–cell interactions define a quintessential aspect of multicellular development. Metazoan morphogenesis depends on a handful of fundamental, conserved cellular interaction mechanisms, one of which is defined by the Notch signaling pathway. Signals transmitted through the Notch surface receptor have a unique developmental role: Notch signaling links the fate of one cell with that of a cellular neighbor through physical interactions between the Notch receptor and the membrane-bound ligands that are expressed in an apposing cell. The developmental outcome of Notch signals is strictly dependent on the cellular context and can influence differentiation, proliferation and apoptotic cell fates. The Notch pathway is conserved across species (Artavanis-Tsakonas et al., 1999; Bray, 2006; Kopan and Ilagan, 2009). In humans, Notch malfunction has been associated with a diverse range of diseases linked to changes in cell fate and cell proliferation including cancer (Louvi and Artavanis-Tsakonas, 2012). In this Cell Science at a Glance article and the accompanying poster we summarize the molecular biology of Notch signaling, its role in development and its relevance to disease.

472 citations


Journal ArticleDOI
TL;DR: The mechanism of membrane fusion at endosomes, vacuoles and lysosomes is focused on, and in particular on the role of the two homologous tethering complexes called CORVET and HOPS, which are heterohexamers.
Abstract: Protein and lipid transport along the endolysosomal system of eukaryotic cells depends on multiple fusion and fission events. Over the past few years, the molecular constituents of both fission and fusion machineries have been identified. Here, we focus on the mechanism of membrane fusion at endosomes, vacuoles and lysosomes, and in particular on the role of the two homologous tethering complexes called CORVET and HOPS. Both complexes are heterohexamers; they share four subunits, interact with Rab GTPases and soluble NSF attachment protein receptors (SNAREs) and can tether membranes. Owing to the presence of specific subunits, CORVET is a Rab5 effector complex, whereas HOPS can bind efficiently to late endosomes and lysosomes through Rab7. Based on the recently described overall structure of the HOPS complex and a number of in vivo and in vitro analyses, important insights into their function have been obtained. Here, we discuss the general function of both complexes in yeast and in metazoan cells in the context of endosomal biogenesis and maturation.

417 citations


Journal ArticleDOI
TL;DR: This is the first study that links non-lethal effects of sublytic MAC attack with inflammasome activation and provides a mechanism by which sublyic MAC can drive inflammation and apoptosis.
Abstract: The membrane attack complex of complement (MAC), apart from its classical role of lysing cells, can also trigger a range of non-lethal effects on cells, acting as a drive to inflammation. In the present study, we chose to investigate these non-lethal effects on inflammasome activation. We found that, following sublytic MAC attack, there is increased cytosolic Ca2+ concentration, at least partly through Ca2+ release from the endoplasmic reticulum lumen via the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels. This increase in intracellular Ca2+ concentration leads to Ca2+ accumulation in the mitochondrial matrix via the ‘mitochondrial calcium uniporter’ (MCU), and loss of mitochondrial transmembrane potential, triggering NLRP3 inflammasome activation and IL-1β release. NLRP3 co-localises with the mitochondria, probably sensing the increase in calcium and the resultant mitochondrial dysfunction, leading to caspase activation and apoptosis. This is the first study that links non-lethal effects of sublytic MAC attack with inflammasome activation and provides a mechanism by which sublytic MAC can drive inflammation and apoptosis.

301 citations


Journal ArticleDOI
TL;DR: It is outlined how microscopy images can be converted into a data representation suitable for machine learning, and various state-of-the-art machine-learning algorithms are introduced, highlighting recent applications in image-based screening.
Abstract: Recent advances in microscope automation provide new opportunities for high-throughput cell biology, such as image-based screening. High-complex image analysis tasks often make the implementation of static and predefined processing rules a cumbersome effort. Machine-learning methods, instead, seek to use intrinsic data structure, as well as the expert annotations of biologists to infer models that can be used to solve versatile data analysis tasks. Here, we explain how machine-learning methods work and what needs to be considered for their successful application in cell biology. We outline how microscopy images can be converted into a data representation suitable for machine learning, and then introduce various state-of-the-art machine-learning algorithms, highlighting recent applications in image-based screening. Our Commentary aims to provide the biologist with a guide to the application of machine learning to microscopy assays and we therefore include extensive discussion on how to optimize experimental workflow as well as the data analysis pipeline.

296 citations


Journal ArticleDOI
TL;DR: Evidence is provided for a ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates as well as additional relevance for TBK1 as an upstream regulator of the autophotic pathway.
Abstract: Aggregation of misfolded proteins and the associated loss of neurons are considered a hallmark of numerous neurodegenerative diseases. Optineurin is present in protein inclusions observed in various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Huntington's disease, Alzheimer's disease, Parkinson's disease, Creutzfeld-Jacob disease and Pick's disease. Optineurin deletion mutations have also been described in ALS patients. However, the role of optineurin in mechanisms of protein aggregation remains unclear. In this report, we demonstrate that optineurin recognizes various protein aggregates via its C-terminal coiled-coil domain in a ubiquitin-independent manner. We also show that optineurin depletion significantly increases protein aggregation in HeLa cells and that morpholino-silencing of the optineurin ortholog in zebrafish causes the motor axonopathy phenotype similar to a zebrafish model of ALS. A more severe phenotype is observed when optineurin is depleted in zebrafish carrying ALS mutations. Furthermore, TANK1 binding kinase 1 (TBK1) is colocalized with optineurin on protein aggregates and is important in clearance of protein aggregates through the autophagy-lysosome pathway. TBK1 phosphorylates optineurin at serine 177 and regulates its ability to interact with autophagy modifiers. This study provides evidence for a ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates as well as additional relevance for TBK1 as an upstream regulator of the autophagic pathway.

277 citations


Journal ArticleDOI
TL;DR: This study visualized expanding IMs as cup-shaped structures using fluorescence microscopy by enlarging a selective cargo of autophagosomes, and finely mapped the localizations of Atg proteins, suggesting that AtG proteins play individual roles at spatially distinct locations during IM expansion.
Abstract: Autophagy is a bulk degradation system mediated by biogenesis of autophagosomes under starvation conditions. In Saccharomyces cerevisiae, a membrane sac called the isolation membrane (IM) is generated from the pre-autophagosomal structure (PAS); ultimately, the IM expands to become a mature autophagosome. Eighteen autophagy-related (Atg) proteins are engaged in autophagosome formation at the PAS. However, the cup-shaped IM was visualized just as a dot by fluorescence microscopy, posing a challenge to further understanding the detailed functions of Atg proteins during IM expansion. In this study, we visualized expanding IMs as cup-shaped structures using fluorescence microscopy by enlarging a selective cargo of autophagosomes, and finely mapped the localizations of Atg proteins. The PAS scaffold proteins (Atg13 and Atg17) and phosphatidylinositol 3-kinase complex I were localized to a position at the junction between the IM and the vacuolar membrane, termed the vacuole-IM contact site (VICS). By contrast, Atg1, Atg8 and the Atg16-Atg12-Atg5 complex were present at both the VICS and the cup-shaped IM. We designate this localization the 'IM' pattern. The Atg2-Atg18 complex and Atg9 localized to the edge of the IM, appearing as two or three dots, in close proximity to the endoplasmic reticulum exit sites. Thus, we designate these dots as the 'IM edge' pattern. These data suggest that Atg proteins play individual roles at spatially distinct locations during IM expansion. These findings will facilitate detailed investigations of the function of each Atg protein during autophagosome formation.

Journal ArticleDOI
TL;DR: This Commentary discusses the latest understandings and insights into the underlying molecular mechanisms, and presents the perspectives necessary to enable system-level understanding of leaf senescence, together with their possible implications for aging in general.
Abstract: How do organisms, organs, tissues and cells change their fate when they age towards senescence and death? Plant leaves provide a unique window to explore this question because they show reproducible life history and are readily accessible for experimental assays. Throughout their lifespan, leaves undergo a series of developmental, physiological and metabolic transitions that culminate in senescence and death. Leaf senescence is an 'altruistic death' that allows for the degradation of the nutrients that are produced during the growth phase of the leaf and their redistribution to developing seeds or other parts of the plant, and thus is a strategy that has evolved to maximize the fitness of the plant. During the past decade, there has been significant progress towards understanding the key molecular principles of leaf senescence using genetic and molecular studies, as well as 'omics' analyses. It is now apparent that leaf senescence is a highly complex genetic program that is tightly controlled by multiple layers of regulation, including at the level of chromatin and transcription, as well as by post-transcriptional, translational and post-translational regulation. This Commentary discusses the latest understandings and insights into the underlying molecular mechanisms, and presents the perspectives necessary to enable our system-level understanding of leaf senescence, together with their possible implications for aging in general.

Journal ArticleDOI
TL;DR: This Cell Science at a Glance article and the accompanying poster summarise the current knowledge on eukaryotic ribosome biogenesis, with an emphasis on the yeast model system.
Abstract: Ribosomes play a pivotal role in the molecular life of every cell. Moreover, synthesis of ribosomes is one of the most energetically demanding of all cellular processes. In eukaryotic cells, ribosome biogenesis requires the coordinated activity of all three RNA polymerases and the orchestrated work of many (>200) transiently associated ribosome assembly factors. The biogenesis of ribosomes is a tightly regulated activity and it is inextricably linked to other fundamental cellular processes, including growth and cell division. Furthermore, recent studies have demonstrated that defects in ribosome biogenesis are associated with several hereditary diseases. In this Cell Science at a Glance article and the accompanying poster, we summarise the current knowledge on eukaryotic ribosome biogenesis, with an emphasis on the yeast model system.

Journal ArticleDOI
TL;DR: A rapidly expanding body of conserved actin polymerization machines that have instrumental roles in controlling rearrangements of the actin cytoskeleton and have recently been shown to directly regulate microtubule dynamics are organized.
Abstract: Formins are conserved actin polymerization machines that have instrumental roles in controlling rearrangements of the actin cytoskeleton and have recently been shown to directly regulate microtubule dynamics. Here, and on the accompanying poster, we aim to organize a rapidly expanding body of

Journal ArticleDOI
TL;DR: The mechanistic coupling between EMT and resistance to anoikis is reviewed, and unifying principles that will lead to improvements in cancer therapy by reprogramming sensitivity of anoIKis are identified.
Abstract: The oncogenic epithelial–mesenchymal transition (EMT) contributes to tumor progression in various context-dependent ways, including increased metastatic potential, expansion of cancer stem cell subpopulations, chemo-resistance and disease recurrence. One of the hallmarks of EMT is resistance of tumor cells to anoikis. This resistance contributes to metastasis and is a defining property not only of EMT but also of cancer stem cells. Here, we review the mechanistic coupling between EMT and resistance to anoikis. The discussion focuses on several key aspects. First, we provide an update on new pathways that lead from the loss of E-cadherin to anoikis resistance. We then discuss the relevance of transcription factors that are crucial in wound healing in the context of oncogenic EMT. Next, we explore the consequences of the breakdown of cell-polarity complexes upon anoikis sensitivity, through the Hippo, Wnt and transforming growth factor β (TGF-β) pathways, emphasizing points of crossregulation. Finally, we summarize the direct regulation of cell survival genes through EMT-inducing transcription factors, and the roles of the tyrosine kinases focal adhesion kinase (FAK) and TrkB neurotrophin receptor in EMT-related regulation of anoikis. Emerging from these studies are unifying principles that will lead to improvements in cancer therapy by reprogramming sensitivity of anoikis.

Journal ArticleDOI
TL;DR: It is shown that the ULK1 complex colocalises with omegasomes in a PtdIns3P-dependent way, and a complete sequence of steps leading to autophagosome formation is established for the first time.
Abstract: Induction of autophagy requires the ULK1 protein kinase complex and the Vps34 lipid kinase complex. PtdIns3P synthesised by Vps34 accumulates in omegasomes, membrane extensions of the ER within which some autophagosomes form. The ULK1 complex is thought to target autophagosomes independently of PtdIns3P, and its functional relationship to omegasomes is unclear. Here we show that the ULK1 complex colocalises with omegasomes in a PtdIns3P-dependent way. Live-cell imaging of Atg13 (a ULK1 complex component), omegasomes and LC3 establishes and annotates for the first time a complete sequence of steps leading to autophagosome formation, as follows. Upon starvation, the ULK1 complex forms puncta associated with the ER and sporadically with mitochondria. If PtdIns3P is available, these puncta become omegasomes. Subsequently, the ULK1 complex exits omegasomes and autophagosomes bud off. If PtdIns3P is unavailable, ULK1 puncta are greatly reduced in number and duration. Atg13 contains a region with affinity for acidic phospholipids, required for translocation to punctate structures and autophagy progression.

Journal ArticleDOI
TL;DR: In this article, the authors used dynamin 1, 2 and 3 triple knockout (TKO) fibroblasts to evaluate the impact of the lack of dynamin on cell physiology.
Abstract: Dynamin, which is encoded by three genes in mammals, is a GTPase implicated in endocytic membrane fission. Dynamin 1 and 3 are predominantly expressed in brain, whereas dynamin 2 is ubiquitously expressed. With the goal of assessing the impact of the lack of dynamin on cell physiology, we previously generated and characterized dynamin 1 and 2 double knockout (DKO) fibroblasts. These DKO cells were unexpectedly viable in spite of a severe impairment of clathrin-mediated endocytosis. As low-level expression of the dynamin 3 gene in these cells could not be excluded, we have now engineered dynamin 1, 2 and 3 triple KO (TKO) fibroblasts. These cells did not reveal any additional defects beyond what was previously observed in DKO fibroblasts. Surprisingly, although fluid-phase endocytosis and peripheral membrane ruffling were not impaired by the lack of all three dynamins, two structurally similar, widely used dynamin inhibitors, dynasore and Dyngo-4a, robustly inhibited these two processes both in wild-type and TKO cells. Dynamin TKO cells will be useful tools for the further exploration of dynamin-dependent processes and the development of more specific dynamin inhibitors.

Journal ArticleDOI
Yohei Yamauchi1, Ari Helenius1
TL;DR: The goal of a virus particle is to transport its genome in a replication-competent form from an infected cell to an uninfected cell.
Abstract: The goal of a virus particle is to transport its genome in a replication-competent form from an infected cell to an uninfected cell. To enter a new host cell, the majority of viruses take advantage of the endocytic mechanisms of the cell and wait until reaching endocytic vacuoles or other

Journal ArticleDOI
TL;DR: The roles of two homologous mammalian proteins, Cep152 and Cep192, in the centriole recruitment of human Plk4 are explored and it is demonstrated that Cep 192 plays a key role in centrosome recruitment of both Cep 152 and Plk 4.
Abstract: Polo-like kinase 4 (Plk4) is a key regulator of centriole duplication, but the mechanism underlying its recruitment to mammalian centrioles is not understood. In flies, Plk4 recruitment depends on Asterless, whereas nematodes rely on a distinct protein, Spd-2. Here, we have explored the roles of two homologous mammalian proteins, Cep152 and Cep192, in the centriole recruitment of human Plk4. We demonstrate that Cep192 plays a key role in centrosome recruitment of both Cep152 and Plk4. Double-depletion of Cep192 and Cep152 completely abolishes Plk4 binding to centrioles as well as centriole duplication, indicating that the two proteins cooperate. Most importantly, we show that Cep192 binds Plk4 through an N-terminal extension that is specific to the largest isoform. The Plk4 binding regions of Cep192 and Cep152 (residues 190-240 and 1-46, respectively) are rich in negatively charged amino acids, suggesting that Plk4 localization to centrioles depends on electrostatic interactions with the positively charged polo-box domain. We conclude that cooperation between Cep192 and Cep152 is crucial for centriole recruitment of Plk4 and centriole duplication during the cell cycle.

Journal ArticleDOI
TL;DR: The identification of proteins involved in inter-organellar interaction in the formation of MCSs involving late-endosomes including endogenous LE–ER MCS is reported.
Abstract: Summary Inter-organelle membrane contacts sites (MCSs) are specific subcellular regions favoring the exchange of metabolites and information. We investigated the potential role of the late-endosomal membrane-anchored proteins StAR related lipid transfer domain-3 (STARD3) and STARD3 N-terminal like (STARD3NL) in the formation of MCSs involving late-endosomes (LEs). We demonstrate that both STARD3 and STARD3NL create MCSs between LEs and the endoplasmic reticulum (ER). STARD3 and STARD3NL use a conserved two phenylalanines in an acidic tract (FFAT)-motif to interact with ER-anchored VAP proteins. Together, they form an LE–ER tethering complex allowing heterologous membrane apposition. This LE–ER tethering complex affects organelle dynamics by altering the formation of endosomal tubules. An in situ proximity ligation assay between STARD3, STARD3NL and VAP proteins identified endogenous LE–ER MCS. Thus, we report here the identification of proteins involved in inter-organellar interaction.

Journal ArticleDOI
TL;DR: This Commentary highlights recent advances in microtubule cues, opposing motor activity and cargo-adaptors that regulate motor activity, and discusses the transport defects that are associated with the development of neurological diseases.
Abstract: Microtubule-based transport is essential for neuronal function because of the large distances that must be traveled by various building blocks and cellular materials. Recent studies in various model systems have unraveled several regulatory mechanisms and traffic rules that control the specificity, directionality and delivery of neuronal cargos. Local microtubule cues, opposing motor activity and cargo-adaptors that regulate motor activity control microtubule-based transport in neurons. Impairment of intracellular transport is detrimental to neurons and has emerged as a common factor in several neurological disorders. Genetic approaches have revealed strong links between intracellular transport processes and the pathogenesis of neurological diseases in both the central and peripheral nervous system. This Commentary highlights recent advances in these areas and discusses the transport defects that are associated with the development of neurological diseases.

Journal ArticleDOI
TL;DR: This Commentary describes how different junction structures are associated with the actomyosin cytoskeleton and how this relates to the magnitude and direction of forces at cell–cell junctions, and outlines the force-induced molecular events that might occur within a key mechanosensitive system at cell-cell junitions.
Abstract: Summary Cells integrate biochemical and mechanical information to function within multicellular tissue. Within developing and remodeling tissues, mechanical forces contain instructive information that governs important cellular processes that include stem cell maintenance, differentiation and growth. Although the principles of signal transduction (protein phosphorylation, allosteric regulation of enzymatic activity and binding sites) are the same for biochemical and mechanical-induced signaling, the first step of mechanosensing, in which protein complexes under tension transduce changes in physical force into cellular signaling, is very different, and the molecular mechanisms are only beginning to be elucidated. In this Commentary, we focus on mechanotransduction at cell–cell junctions, aiming to comprehend the molecular mechanisms involved. We describe how different junction structures are associated with the actomyosin cytoskeleton and how this relates to the magnitude and direction of forces at cell–cell junctions. We discuss which cell–cell adhesion receptors have been shown to take part in mechanotransduction. Then we outline the force-induced molecular events that might occur within a key mechanosensitive system at cell–cell junctions; the cadherin–F-actin interface, at which α-catenin and vinculin form a central module. Mechanotransduction at cell–cell junctions emerges as an important signaling mechanism, and we present examples of its potential relevance for tissue development and disease.

Journal ArticleDOI
TL;DR: BubR1 directly binds to the B56 family of protein phosphatase 2A (PP2A) regulatory subunits through a conserved motif that is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and polo-like kinases 1 (Plk1), and the data suggest that BubR1 counteracts Aurora B kinase activity at improperly attached kinetochores by recruiting B56– PP2A phosphatases complexes.
Abstract: BubR1 is a central component of the spindle assembly checkpoint that inhibits progression into anaphase in response to improper kinetochore–microtubule interactions. In addition, BubR1 also helps stabilize kinetochore–microtubule interactions by counteracting the Aurora B kinase but the mechanism behind this is not clear. Here we show that BubR1 directly binds to the B56 family of protein phosphatase 2A (PP2A) regulatory subunits through a conserved motif that is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and polo-like kinase 1 (Plk1). Two highly conserved hydrophobic residues surrounding the serine 670 Cdk1 phosphorylation site are required for B56 binding. Mutation of these residues prevents the establishment of a proper metaphase plate and delays cells in mitosis. Furthermore, we show that phosphorylation of serines 670 and 676 stimulates the binding of B56 to BubR1 and that BubR1 targets a pool of B56 to kinetochores. Our data suggest that BubR1 counteracts Aurora B kinase activity at improperly attached kinetochores by recruiting B56–PP2A phosphatase complexes.

Journal ArticleDOI
TL;DR: A group of editors and publishers of scholarly journals gathered together at the Annual Meeting of The American Society for Cell Biology in San Francisco, CA, USA to discuss current issues related to how the quality of research output is.
Abstract: On December 16, 2012, a group of editors and publishers of scholarly journals, including Journal of Cell Science , gathered together at the Annual Meeting of The American Society for Cell Biology in San Francisco, CA, USA to discuss current issues related to how the quality of research output is

Journal ArticleDOI
TL;DR: The recent demonstration of SR/ER–mitochondria tethers that are formed by multiple proteins, and local Ca2+ transfer betweenSR/ER and mitochondria in muscle are discussed.
Abstract: Mitochondria are strategically and dynamically positioned in the cell to spatially coordinate ATP production with energy needs and to allow the local exchange of material with other organelles. Interactions of mitochondria with the sarco-endoplasmic reticulum (SR/ER) have been receiving much attention owing to emerging evidence on the role these sites have in cell signaling, dynamics and biosynthetic pathways. One of the most important physiological and pathophysiological paradigms for SR/ER-mitochondria interactions is in cardiac and skeletal muscle. The contractile activity of these tissues has to be matched by mitochondrial ATP generation that is achieved, at least in part, by propagation of Ca(2+) signals from SR to mitochondria. However, the muscle has a highly ordered structure, providing only limited opportunity for mitochondrial dynamics and interorganellar interactions. This Commentary focuses on the latest advances in the structure, function and disease relevance of the communication between SR/ER and mitochondria in muscle. In particular, we discuss the recent demonstration of SR/ER-mitochondria tethers that are formed by multiple proteins, and local Ca(2+) transfer between SR/ER and mitochondria.

Journal ArticleDOI
TL;DR: Investigation of the mechanisms controlling miR-200 expression revealed both DNA methylation and histone modifications were significantly altered in the stem-like and non-stem phenotypes and that distinct epigenetic-based mechanisms regulate each mi R-200 gene in this process.
Abstract: The miR-200 family is a key regulator of the epithelial-mesenchymal transition, however, its role in controlling the transition between cancer stem-cell-like and non-stem-cell-like phenotypes is not well understood. We utilized immortalized human mammary epithelial (HMLE) cells to investigate the regulation of the miR-200 family during their conversion to a stem-like phenotype. HMLE cells were found to be capable of spontaneous conversion from a non-stem to a stem-like phenotype and this conversion was accompanied by the loss of miR-200 expression. Stem-like cell fractions isolated from metastatic breast cancers also displayed loss of miR-200 indicating similar molecular changes may occur during breast cancer progression. The phenotypic change observed in HMLE cells was directly controlled by miR-200 because restoration of its expression decreased stem-like properties while promoting a transition to an epithelial phenotype. Investigation of the mechanisms controlling miR-200 expression revealed both DNA methylation and histone modifications were significantly altered in the stem-like and non-stem phenotypes. In particular, in the stem-like phenotype, the miR-200b-200a-429 cluster was silenced primarily through polycomb group-mediated histone modifications whereas the miR-200c-141 cluster was repressed by DNA methylation. These results indicate that the miR-200 family plays a crucial role in the transition between stem-like and non-stem phenotypes and that distinct epigenetic-based mechanisms regulate each miR-200 gene in this process. Therapy targeted against miR-200 family members and epigenetic modifications might therefore be applicable to breast cancer.

Journal ArticleDOI
TL;DR: Spatial and temporal coordination of many stages in the life of autophagosomes underlines the integrative role of microtubules and progressively reveals hidden parts of the autophagy machinery.
Abstract: Both at a basal level and after induction (especially in response to nutrient starvation), the function of autophagy is to allow cells to degrade and recycle damaged organelles, proteins and other biological constituents. Here, we focus on the role microtubules have in autophagosome formation, autophagosome transport across the cytoplasm and in the formation of autolysosomes. Recent insights into the exact relationship between autophagy and microtubules now point to the importance of microtubule dynamics, tubulin post-translational modifications and microtubule motors in the autophagy process. Such factors regulate signaling pathways that converge to stimulate autophagosome formation. They also orchestrate the movements of pre-autophagosomal structures and autophagosomes or more globally organize and localize immature and mature autophagosomes and lysosomes. Most of the factors that now appear to link microtubules to autophagosome formation or to autophagosome dynamics and fate were identified initially without the notion that sequestration, recruitment and/or interaction with microtubules contribute to their function. Spatial and temporal coordination of many stages in the life of autophagosomes thus underlines the integrative role of microtubules and progressively reveals hidden parts of the autophagy machinery.

Journal ArticleDOI
TL;DR: Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis through its functioning as both a co-receptor for the fibroblast growth factor receptors and its ability to independently activate signaling pathways upon ligand binding.
Abstract: Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1–FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.

Journal ArticleDOI
TL;DR: It is described that lysosomal tethering and transport are combined processes co-regulated by one multi-protein complex: RAB7–RILP–ORP1L, which efficiently couples and regulates the timing of microtubule minus-end transport and fusion, two major events in endosomal biology.
Abstract: Late endosomes and lysosomes are dynamic organelles that constantly move and fuse to acquire cargo from early endosomes, phagosomes and autophagosome. Defects in lysosomal dynamics cause severe neurodegenerative and developmental diseases, such as Niemann-Pick type C disease and ARC syndrome, yet little is known about the regulation of late endosomal fusion in a mammalian system. Mammalian endosomes destined for fusion need to be transported over very long distances before they tether to initiate contact. Here, we describe that lysosomal tethering and transport are combined processes co-regulated by one multi-protein complex: RAB7-RILP-ORP1L. We show that RILP directly and concomitantly binds the tethering HOPS complex and the p150(Glued) subunit of the dynein motor. ORP1L then functions as a cholesterol-sensing switch controlling RILP-HOPS-p150(Glued) interactions. We show that RILP and ORP1L control Ebola virus infection, a process dependent on late endosomal fusion. By combining recruitment and regulation of both the dynein motor and HOPS complex into a single multiprotein complex, the RAB7-RILP-ORP1L complex efficiently couples and regulates the timing of microtubule minus-end transport and fusion, two major events in endosomal biology.

Journal ArticleDOI
TL;DR: By expressing recombinant fragments of mutant Htt in neuronal cells and in primary neurons, it is found that aggregated fragments formed within one cell spontaneously transfer to neighbors in cell culture, and it is demonstrated that the intercellular spreading of the aggregates requires cell–cell contact and does not occur upon aggregate secretion.
Abstract: Summary Huntington9s disease (HD) is a dominantly inherited neurodegenerative disease caused by CAG expansion in the huntingtin gene, which adds a homopolymeric tract of polyglutamine (polyQ) to the encoded protein leading to the formation of toxic aggregates. Despite rapidly accumulating evidences supporting a role for intercellular transmission of protein aggregates, little is known about whether and how huntingtin (Htt) misfolding progresses through the brain. It has been recently reported that synthetic polyQ peptides and recombinant fragments of mutant Htt are readily internalized in cell cultures and able to seed polymerization of a reporter wild-type Htt. However, there is no direct evidence of aggregate transfer between cells and the mechanism has not been explored. By expressing recombinant fragments of mutant Htt in neuronal cells and in primary neurons, we found that aggregated fragments formed within one cell spontaneously transfer to neighbors in cell culture. We demonstrate that the intercellular spreading of the aggregates requires cell–cell contact and does not occur upon aggregate secretion. Interestingly, we found that the expression of mutant, but not wild-type Htt fragments, increases the number of tunneling nanotubes, which in turn provide an efficient mechanism of transfer.