scispace - formally typeset
Search or ask a question

Showing papers in "RSC Advances in 2021"


Journal ArticleDOI
TL;DR: In this article, a review of composites of conducting polymers with carbonaceous materials, metal oxides, transition metals and transition metal dichalcogenides is presented, which help to explain the conduction mechanism, relevant synthesis approaches, and physical properties including electrical, optical and mechanical properties.
Abstract: Conducting polymers are extensively studied due to their outstanding properties, including tunable electrical property, optical and high mechanical properties, easy synthesis and effortless fabrication and high environmental stability over conventional inorganic materials Although conducting polymers have a lot of limitations in their pristine form, hybridization with other materials overcomes these limitations The synergetic effects of conducting polymer composites give them wide applications in electrical, electronics and optoelectronic fields An in-depth analysis of composites of conducting polymers with carbonaceous materials, metal oxides, transition metals and transition metal dichalcogenides etc is used to study them effectively Here in this review we seek to describe the transport models which help to explain the conduction mechanism, relevant synthesis approaches, and physical properties, including electrical, optical and mechanical properties Recent developments in their applications in the fields of energy storage, photocatalysis, anti-corrosion coatings, biomedical applications and sensing applications are also explained Structural properties play an important role in the performance of the composites

334 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported the sonochemical synthesis of DBNO NC (dysprosium nickelate nanocomposite) using metal nitrates and core almond as a capping agent.
Abstract: The present work reports the sonochemical synthesis of DBNO NC (dysprosium nickelate nanocomposite) using metal nitrates and core almond as a capping agent. In addition, the effects of the power of ultrasound irradiation were investigated. The BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites were synthesized with sonication powers of 50 and 30 W, respectively. The agglomerated nanoparticles were obtained using different sonication powers, including 15, 30, and 50 W. The results showed that upon increasing the sonication power, the particle size decreased. After characterization, the optical, electrical, magnetic, and photocatalytic properties of the NC were studied. The nanocomposites showed an antiferromagnetic behavior. In this study, the photocatalytic degradations of two dyes, AR14 and AB92, were investigated in the presence of DBNO NC. Furthermore, the effects of the amount of photocatalyst, the concentration of the dye solution, the type of organic dye, and light irradiation on the photocatalytic activity of the nanocomposite were studied. The results showed that with an increasing amount of catalyst and decreasing concentration of dye, the photocatalytic activity of the nanocomposite was increased. This activity for the degradation of AR14 is higher than that of AB92. Both AR14 and AB92 dyes show higher photocatalytic degradation under UV irradiation than under Vis irradiation.

300 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide a systematic in-depth discussion on the possible influence of phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs.
Abstract: Synthesis of metal nanoparticles using plant extracts is one of the most simple, convenient, economical, and environmentally friendly methods that mitigate the involvement of toxic chemicals. Hence, in recent years, several eco-friendly processes for the rapid synthesis of silver nanoparticles have been reported using aqueous extracts of plant parts such as the leaf, bark, roots, etc. This review summarizes and elaborates the new findings in this research domain of the green synthesis of silver nanoparticles (AgNPs) using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015. While highlighting the recently used different plants for the synthesis of highly efficient antimicrobial green AgNPs, we aim to provide a systematic in-depth discussion on the possible influence of the phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs. Exhaustive details of the plausible mechanism of the interaction of AgNPs with the cell wall of microbes, leading to cell death, and high antimicrobial activities have also been elaborated. The shape and size-dependent antimicrobial activities of the biogenic AgNPs and the enhanced antimicrobial activities by synergetic interaction of AgNPs with known commercial antibiotic drugs have also been comprehensively detailed.

190 citations


Journal ArticleDOI
TL;DR: In this paper, the feasibility of both poly Lactic Acid (PLA) and polyhydroxyalkanoates (PHAs) as alternative materials that can replace petroleum-based polymers in a wide range of industrial applications is discussed.
Abstract: In spite of the fact that petroleum-based plastics are convenient in terms of fulfilling the performance requirements of many applications, they contribute significantly to a number of ecological and environmental problems. Recently, the public awareness of the negative effects of petroleum-based plastics on the environment has increased. The present utilization of natural resources cannot be sustained forever. Furthermore, oil is often subjected to price fluctuations and will eventually be depleted. The increase in the level of carbon dioxide due to the combustion of fossil fuel is causing global warming. Concerns about preservation of natural resources and climate change are considered worldwide motivations for academic and industrial researchers to reduce the consumption and dependence on fossil fuel. Therefore, bio-based polymers are moving towards becoming the favorable option to be utilized in polymer manufacturing, food packaging, and medical applications. This paper represents an overview of the feasibility of both Poly Lactic Acid (PLA) and polyhydroxyalkanoates (PHAs) as alternative materials that can replace petroleum-based polymers in a wide range of industrial applications. Physical, thermal, rheological, and mechanical properties of both polymers as well as their permeability and migration properties have been reviewed. Moreover, PLA's recyclability, sustainability, and environmental assessment have been also discussed. Finally, applications in which both polymers can replace petroleum-based plastics have been explored and provided.

153 citations


Journal ArticleDOI
TL;DR: Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry.
Abstract: Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research.

97 citations


Journal ArticleDOI
TL;DR: In this paper, the most common green CD synthesis and purification methods reported in the literature and the renewable precursors used are discussed and the physical, chemical, and optical properties of the resulting green-synthesized CDs are critically reviewed, followed by a detailed description of their applications in sensing, bioimaging, biomedicine, inks, and catalysis.
Abstract: Carbon dots (CDs) are nanoparticles with tunable physicochemical and optical properties. Their resistance to photobleaching and relatively low toxicity render them attractive alternatives to fluorescent dyes and heavy metal-based quantum dots in the fields of bioimaging, sensing, catalysis, solar cells, and light-emitting diodes, among others. Moreover, they have garnered considerable attention as they lend themselves to green synthesis methods. Increasingly, one-pot syntheses comprising exclusively of renewable raw materials or renewable refined compounds are gaining favor over traditional approaches that rely on harsh chemicals and energy intensive conditions. The field of green CD synthesis is developing rapidly; however, challenges persist in ensuring the consistency of their properties (e.g., fluorescence quantum yield) relative to conventional preparation methods. This has mostly limited their use to sensing and bioimaging, leaving opportunities for development in optoelectronic applications. Herein, we discuss the most common green CD synthesis and purification methods reported in the literature and the renewable precursors used. The physical, chemical, and optical properties of the resulting green-synthesized CDs are critically reviewed, followed by a detailed description of their applications in sensing, bioimaging, biomedicine, inks, and catalysis. We conclude with an outlook on the future of green CD synthesis. Future research efforts should address the broad knowledge gap between CDs synthesized from renewable versus non-renewable precursors, focusing on discrepancies in their physical, chemical, and optical properties. The development of cost effective, safe, and sustainable green CDs with tunable properties will broaden their implementation in largely untapped applications, which include drug delivery, photovoltaics, catalysis, and more.

76 citations


Journal ArticleDOI
TL;DR: In vitro, cellular processing on polymeric surfaces is fundamental to the development of biosensors, scaffolds for tissue engineering and transplantation.
Abstract: In vitro, cellular processing on polymeric surfaces is fundamental to the development of biosensors, scaffolds for tissue engineering and transplantation. However, the effect of surface energy and roughness on the cell–surface interaction remains inconclusive, indicating a lack of complete understanding of the phenomenon. Here, we study the effect of surface energy (Es) and roughness ratio (r) of a polydimethylsiloxane (PDMS) substrate on cell attachment, growth, and proliferation. We considered two different cell lines, HeLa and MDA MB 231, and rough PDMS surfaces of different surface energy in the range Es = 21–100 mJ m−2, corresponding to WCA 161°–1°, and roughness ratio in the range r = 1.05–3, corresponding to roughness 5–150 nm. We find that the cell attachment process proceeds through three different stages marked by an increase in the number of attached cells with time (stage I), flattening of cells (stage II), and elongation of cells (III) on the surface. Our study reveals that moderate surface energy (Es ≈ 70 mJ m−2) and intermediate roughness ratio (r ≈ 2) constitute the most favourable conditions for efficient cell adhesion, growth, and proliferation. A theoretical model based on the minimization of the total free energy of the cell–substrate system is presented and is used to predict the spread length of cells that compares well with the corresponding experimental data within 10%. The performance and reusability of the rough PDMS surface of moderate energy and roughness prepared via facile surface modification are compared with standard T-25 cell culture plates for cell growth and proliferation, which shows that the proposed surface is an attractive choice for efficient cell culture.

73 citations


Journal ArticleDOI
TL;DR: A review of the literature concerning the current and future market potential and environmental impacts of face masks with inherent antimicrobial properties can help in real-time deactivation of microorganisms enabling multiple-use and reducing secondary infections as discussed by the authors.
Abstract: The world has witnessed several incidents of epidemics and pandemics since the beginning of human existence The gruesome effects of microbial threats create considerable repercussions on the healthcare systems The continually evolving nature of causative viruses due to mutation or re-assortment sometimes makes existing medicines and vaccines inactive As a rapid response to such outbreaks, much emphasis has been placed on personal protective equipment (PPE), especially face mask, to prevent infectious diseases from airborne pathogens Wearing face masks in public reduce disease transmission and creates a sense of community solidarity in collectively fighting the pandemic However, excessive use of single-use polymer-based face masks can pose a significant challenge to the environment and is increasingly evident in the ongoing COVID-19 pandemic On the contrary, face masks with inherent antimicrobial properties can help in real-time deactivation of microorganisms enabling multiple-use and reduces secondary infections Given the advantages, several efforts are made incorporating natural and synthetic antimicrobial agents (AMA) to produce face mask with enhanced safety, and the literature about such efforts are summarised The review also discusses the literature concerning the current and future market potential and environmental impacts of face masks Among the AMA tested, metal and metal-oxide based materials are more popular and relatively matured technology However, the repeated use of such a face mask may pose a danger to the user and environment due to leaching/detachment of nanoparticles So careful consideration is required to select AMA and their incorporation methods to reduce their leaching and environmental impacts Also, systematic studies are required to establish short-term and long-term benefits

72 citations


Journal ArticleDOI
TL;DR: Six compounds were screened for their anti-SARS-CoV-2 activities against both the spike (S) and main protease (Mpro) receptors using molecular docking studies and showed very promising virucidal activity with a most prominent inhibitory effect on viral adsorption rather than its replication.
Abstract: Six compounds namely, tanshinone IIA (1), carnosic acid (2), rosmarinic acid (3), salvianolic acid B (4), baicalein (5), and glycyrrhetinic acid (6) were screened for their anti-SARS-CoV-2 activities against both the spike (S) and main protease (Mpro) receptors using molecular docking studies. Molecular docking recommended the superior affinities of both salvianolic acid B (4) and glycyrrhetinic acid (6) as the common results from the previously published computational articles. On the other hand, their actual anti-SARS-CoV-2 activities were tested in vitro using plaque reduction assay to calculate their IC50 values after measuring their CC50 values using MTT assay on Vero E6 cells. Surprisingly, tanshinone IIA (1) was the most promising member with IC50 equals 4.08 ng μl−1. Also, both carnosic acid (2) and rosmarinic acid (3) showed promising IC50 values of 15.37 and 25.47 ng μl−1, respectively. However, salvianolic acid (4) showed a weak anti-SARS-CoV-2 activity with an IC50 value equals 58.29 ng μl−1. Furthermore, molecular dynamics simulations for 100 ns were performed for the most active compound from the computational point of view (salvianolic acid 4), besides, the most active one biologically (tanshinone IIA 1) on both the S and Mpro complexes of them (four different molecular dynamics processes) to confirm the docking results and give more insights regarding the stability of both compounds inside the SARS-CoV-2 mentioned receptors, respectively. Also, to understand the mechanism of action for the tested compounds towards SARS-CoV-2 inhibition it was necessary to examine the mode of action for the most two promising compounds, tanshinone IIA (1) and carnosic acid (2). Both compounds (1 and 2) showed very promising virucidal activity with a most prominent inhibitory effect on viral adsorption rather than its replication. This recommended the predicted activity of the two compounds against the S protein of SARS-CoV-2 rather than its Mpro protein. Our results could be very promising to rearrange the previously mentioned compounds based on their actual inhibitory activities towards SARS-CoV-2 and to search for the reasons behind the great differences between their in silico and in vitro results against SARS-CoV-2. Finally, we recommend further advanced preclinical and clinical studies especially for tanshinone IIA (1) to be rapidly applied in COVID-19 management either alone or in combination with carnosic acid (2), rosmarinic acid (3), and/or salvianolic acid (4).

71 citations


Journal ArticleDOI
TL;DR: In this paper, the in situ growth of well-dispersed Cd-doped ZnO nanoparticles (Cd-ZnO NPs) on graphitic carbon nitride (g-C3N4) nanosheets was successfully achieved through the co-precipitation method for the formation of CdDoped ZNO nanocomposites with g-C 3N4.
Abstract: The in situ growth of well-dispersed Cd-doped ZnO nanoparticles (Cd-ZnO NPs) on graphitic carbon nitride (g-C3N4) nanosheets was successfully achieved through the co-precipitation method for the formation of Cd-doped ZnO nanocomposites with g-C3N4 (Cd-ZnO/g-C3N4 NCs). The effect of different compositions of ternary nanocomposites (Cd-ZnO/g-C3N4 NCs) on photocatalytic properties was investigated. Ternary NCs, in which 60% g-C3N4 hybridized with 7% Cd-doped ZnO (g-C3N4/Cd-ZnO) NCs were proven to be optimum visible-light-driven (VLD) photocatalysts for the degradation of methylene blue (MB) dye. The enhanced photodegradation of MB is mainly due to the increase in the generation of photogenerated charge carriers (reactive oxygen species (ROS), O2−, and ˙OH radicals). The electron spin resonance (ESR) experiment revealed that the superoxide and hydroxyl radicals were the leading species responsible for the degradation of MB. Moreover, the NC exhibited tremendous stability with a consistently high MB degradation rate for 10 successive catalytic cycles. The structural and optical properties of CdO, ZnO NPs, Cd-ZnO NPs, g-C3N4 NSs, and g-C3N4/Cd-ZnO NCs were investigated via XRD, SEM, EDX, TEM, FTIR spectroscopy, UV-Vis spectroscopy, ESR spectroscopy, and PL spectroscopy techniques. The synthesized photocatalysts were also applied against Gram-positive and Gram-negative bacterial strains to evaluate their antibacterial activities.

71 citations


Journal ArticleDOI
TL;DR: Sodium sulfinates have been used extensively in the preparation of organosulfur compounds through S-S, N−S, and C-S bond-forming reactions as discussed by the authors.
Abstract: This review highlights the preparation of sodium sulfinates (RSO2Na) and their multifaceted synthetic applications. Substantial progress has been made over the last decade in the utilization of sodium sulfinates emerging as sulfonylating, sulfenylating or sulfinylating reagents, depending on reaction conditions. Sodium sulfinates act as versatile building blocks for preparing many valuable organosulfur compounds through S–S, N–S, and C–S bond-forming reactions. Remarkable advancement has been made in synthesizing thiosulfonates, sulfonamides, sulfides, and sulfones, including vinyl sulfones, allyl sulfones, and β-keto sulfones. The significant achievement of developing sulfonyl radical-triggered ring-closing sulfonylation and multicomponent reactions is also thoroughly discussed. Of note, the most promising site-selective C–H sulfonylation, photoredox catalytic transformations and electrochemical synthesis of sodium sulfinates are also demonstrated. Holistically, this review provides a unique and comprehensive overview of sodium sulfinates, which summarizes 355 core references up to March 2020. The chemistry of sodium sulfinate salts is divided into several sections based on the classes of sulfur-containing compounds with some critical mechanistic insights that are also disclosed.

Journal ArticleDOI
TL;DR: This review has discussed concerns related to the role of these types of nanoparticles as an anti-viral agent by majorly highlighting the ways to combat the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, along with their prospects.
Abstract: To date, various reports have shown that metallic gold bhasma at the nanoscale form was used as medicine as early as 2500 B.C. in India, China, and Egypt. Owing to their unique physicochemical, biological, and electronic properties, they have broad utilities in energy, environment, agriculture and more recently, the biomedical field. The biomedical domain has been used in drug delivery, imaging, diagnostics, therapeutics, and biosensing applications. In this review, we will discuss and highlight the increasing control over metal and metal oxide nanoparticle structures as smart nanomaterials utilized in the biomedical domain to advance the role of biosynthesized nanoparticles for improving human health through wide applications in the targeted drug delivery, controlled release drug delivery, wound dressing, tissue scaffolding, and medical implants. In addition, we have discussed concerns related to the role of these types of nanoparticles as an anti-viral agent by majorly highlighting the ways to combat the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, along with their prospects.

Journal ArticleDOI
TL;DR: In this article, the possibility and challenges of utilizing non-edible oil as a potential feedstock for biodiesel production were investigated and the finding of the present study revealed that there is a huge opportunity to utilize non-e edible oils as a feedstock of biodiesel.
Abstract: There is increasing concern regarding alleviating world energy demand by determining an alternative to petroleum-derived fuels due to the rapid depletion of fossil fuels, rapid population growth, and urbanization. Biodiesel can be utilized as an alternative fuel to petroleum-derived diesel for the combustion engine. At present, edible crops are the primary source of biodiesel production. However, the excessive utilization of these edible crops for large-scale biodiesel production might cause food supply depletion and economic imbalance. Moreover, the utilization of edible oil as a biodiesel feedstock increases biodiesel production costs due to the high price of edible oils. A possible solution to overcome the existing limitations of biodiesel production is to utilize non-edible crops oil as a feedstock. The present study was conducted to determine the possibility and challenges of utilizing non-edible oil as a potential feedstock for biodiesel production. Several aspects related to non-edible oil as a biodiesel feedstock such as overview of biodiesel feedstocks, non-edible oil resources, non-edible oil extraction technology, its physicochemical and fatty acid properties, biodiesel production technologies, advantages and limitation of using non-edible oil as a feedstock for biodiesel production have been reviewed in various recent publications. The finding of the present study reveals that there is a huge opportunity to utilize non-edible oil as a feedstock for biodiesel production.

Journal ArticleDOI
TL;DR: In this article, the authors summarized developments in porous adsorbents for CO2 capture with emphasis on recent studies, including metal-organic frameworks (MOFs), zeolites, mesoporous silica, clay, porous carbons, porous organic polymers (POP), and metal oxides (MO) and discussed advanced strategies employed to increase the performance of CO2 adsorption capacity.
Abstract: Global warming due to the high concentration of anthropogenic CO2 in the atmosphere is considered one of the world's leading challenges in the 21st century as it leads to severe consequences such as climate change, extreme weather events, ocean warming, sea-level rise, declining Arctic sea ice, and the acidification of oceans This encouraged advancing technologies that sequester carbon dioxide from the atmosphere or capture those emitted before entering the carbon cycle Recently, CO2 capture, utilizing porous materials was established as a very favorable route, which has drawn extreme interest from scientists and engineers due to their advantages over the absorption approach In this review, we summarize developments in porous adsorbents for CO2 capture with emphasis on recent studies Highly efficient porous adsorption materials including metal–organic frameworks (MOFs), zeolites, mesoporous silica, clay, porous carbons, porous organic polymers (POP), and metal oxides (MO) are discussed Besides, advanced strategies employed to increase the performance of CO2 adsorption capacity to overcome their drawbacks have been discoursed

Journal ArticleDOI
TL;DR: This review article is oriented to provide an insight and a deeper understanding of the tyrosinase inhibitory activity of an array of natural and bioinspired phenolic compounds with special emphasis on flavonoids to demonstrate how the position of ring substituents and their interaction with tyosinase could be correlated with their effectiveness or lack thereof against inhibiting the enzyme.
Abstract: Tyrosinase is a multifunctional glycosylated and copper-containing oxidase that is highly prevalent in plants and animals and plays a pivotal role in catalyzing the two key steps of melanogenesis: tyrosine's hydroxylation to dihydroxyphenylalanine (DOPA), and oxidation of the latter species to dopaquinone. Melanin guards against the destructive effects of ultraviolet radiation which is known to produce considerable pathological disorders such as skin cancer, among others. Moreover, the overproduction of melanin can create aesthetic problems along with serious disorders linked to hyperpigmented spots or patches on skin. Several skin-whitening products which reduce melanogenesis activity and alleviate hyperpigmentation are commercially available. A few of them, particularly those obtained from natural sources and that incorporate a phenolic scaffold, have been exploited in the cosmetic industry. In this context, synthetic tyrosinase inhibitors (TIs) with elevated efficacy and fewer side effects are direly needed in the pharmaceutical and cosmetic industries owing to their protective effect against pigmentation and dermatological disorders. Furthermore, the biological significance of the chromone skeleton and its associated medicinal and bioactive properties has drawn immense interest and inspired many researchers to design and develop novel anti-tyrosinase agents based on the flavonoid core (2-arylchromone). This review article is oriented to provide an insight and a deeper understanding of the tyrosinase inhibitory activity of an array of natural and bioinspired phenolic compounds with special emphasis on flavonoids to demonstrate how the position of ring substituents and their interaction with tyrosinase could be correlated with their effectiveness or lack thereof against inhibiting the enzyme.

Journal ArticleDOI
TL;DR: In this paper, all possible applications of SnSe/SnSe2 have been summarized and some of the basic properties, as well as synthesis techniques have also been outlined, which will help the researcher to understand the properties and possible application of tin selenide-based materials.
Abstract: SnSe/SnSe2 is a promising versatile material with applications in various fields like solar cells, photodetectors, memory devices, lithium and sodium-ion batteries, gas sensing, photocatalysis, supercapacitors, topological insulators, resistive switching devices due to its optimal band gap. In this review, all possible applications of SnSe/SnSe2 have been summarized. Some of the basic properties, as well as synthesis techniques have also been outlined. This review will help the researcher to understand the properties and possible applications of tin selenide-based materials. Thus, this will help in advancing the field of tin selenide-based materials for next generation technology.

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the limiting factors influencing the morphology of electrospun nanofibers and present recent advancements in electrospinning processes, which helps to not only overcome drawbacks associated with the conventional electro-spinning but also to produce nanofiber of different morphology and orientation with an increased rate of production.
Abstract: With rapid advancement in water filtration materials, several efforts have been made to fabricate electrospun nanofiber membranes (ENMs). ENMs play a crucial role in different areas of water treatment due to their several advantageous properties such as high specific surface area, high interconnected porosity, controllable thickness, mechanical robustness, and wettability. In the broad field of water purification, ENMs have shown tremendous potential in terms of permeability, rejection, energy efficiency, resistance to fouling, reusability and mechanical robustness as compared to the traditional phase inversion membranes. Upon various chemical and physical modifications of ENMs, they have exhibited great potential for emerging applications in environment, energy and health sectors. This review firstly presents an overview of the limiting factors influencing the morphology of electrospun nanofibers. Secondly, it presents recent advancements in electrospinning processes, which helps to not only overcome drawbacks associated with the conventional electrospinning but also to produce nanofibers of different morphology and orientation with an increased rate of production. Thirdly, it presents a brief discussion about the recent progress of the ENMs for removal of various pollutants from aqueous system through major areas of membrane separation. Finally, this review concludes with the challenges and future directions in this vast and fast growing area.

Journal ArticleDOI
TL;DR: In this article, an easily magnetically recoverable polydopamine (PDA)-modified hydroxyapatite (HAp)/Fe3O4 magnetic composite was suitably synthesized to exploit its adsorption capacity to remove Zn2+ from aqueous solution and its structural properties were thoroughly examined using different analytical techniques.
Abstract: In this study, an easily magnetically recoverable polydopamine (PDA)-modified hydroxyapatite (HAp)/Fe3O4 magnetic composite (HAp/Fe3O4/PDA) was suitably synthesized to exploit its adsorption capacity to remove Zn2+ from aqueous solution, and its structural properties were thoroughly examined using different analytical techniques. The effect of multiple parameters like pH, ultrasonic power, ultrasonic time, adsorbent dose, and initial Zn2+ concentration on the adsorption efficiency was assessed using RSM-CCD. According to the acquired results, by increasing the adsorbent quantity, ultrasonic power, ultrasonic time, and pH, the Zn2+ adsorption efficiency increased and the interaction between the variables of ultrasonic power/Zn2+ concentration, pH/Zn2+ concentration, pH/absorbent dose, and ultrasonic time/adsorbent dose has a vital role in the Zn2+ adsorption. The uptake process of Zn2+ onto PDA/HAp/Fe3O4 followed Freundlich and pseudo-second order kinetic models. The maximum capacity of Zn2+ adsorption (qm) obtained by PDA/HAp/Fe3O4, HAp/Fe3O4, and HAp was determined as 46.37 mg g−1, 40.07 mg g−1, and 37.57 mg g−1, respectively. Due to its good performance and recoverability (ten times), the HAp/Fe3O4/PDA magnetic composite can be proposed as a good candidate to eliminate Zn2+ ions from a water solution.

Journal ArticleDOI
TL;DR: In this article, a reference compound named methyl (E)-2-cyano-3-(5-(pyren-1-yl)thiophen-2-yl)-3-acrylate (MCPTR) was taken for the design of its derivatives, abbreviated from MCPTD1 to MCPTR8 compounds.
Abstract: In the present study, organic pyrene-based derivatives were selected for NLO investigation. The reference compound named methyl (E)-2-cyano-3-(5-(pyren-1-yl)thiophen-2-yl)-3-acrylate (MCPTR) was taken for the design of its derivatives, abbreviated from MCPTD1 to MCPTD8 compounds. The nonlinear optical (NLO) properties, frontier molecular orbitals (FMOs), natural bonding orbital (NBO), and UV-vis analyses of molecules (MCPTR–MCPTD8) were executed by M06 level with 6-31G(d,p) basis set. The UV-vis investigation showed that all designed compounds exhibited a redshift, and the maximum wavelength was studied in MCPTD7 (832.330 nm). The HOMO–LUMO band gaps of MCPTD1–MCPTD8 were found to be smaller as compared to those of MCPTR (3.210 eV). The global reactivity information was correlated with band gap values; MCPTD7, having a lower band gap, exhibited smaller hardness values (0.0321 Eh) with larger softness values (15.5763 Eh). The natural bond orbital analysis (NBO) helped to elucidate the hyper conjugative interactions, along with the stability and electron-transfer process. The dipole moment (μ), average polarizability 〈α〉, first hyperpolarizability (βvec) and second hyperpolarizability 〈γ〉 were computed for MCPTR–MCPTD8. Consequently, all designed compounds (MCPTD1–MCPTD8) possessed greater NLO responses than the reference compound (MCPTR). Interestingly, MCPTD7 showed a smaller energy gap and remarkable NLO response among MCPTD1–MCPTD8 compounds. The highest μtotal, 〈α〉, βvec and 〈γ〉 values for MCPTD7 were observed as 7.200, 2.40 × 10−22 esu, 2.84 × 10−27 esu and 8.6024 × 107 esu, respectively. Aptitude towards the NLO material relied upon the position of different groups, the conjugated system donor and acceptor regions. The high NLO response reveals the fact that this class of pyrene-based derivatives with a thiophene linker has remarkable contributions towards NLO technological applications.

Journal ArticleDOI
TL;DR: It was concluded that adding silk fibroin and ZnCr2O4 nanoparticles could enhance the mechanical tensile properties of cross-linked lignin–agarose hydrogel, and also an elastic network was characterized for this designed nanobiocomposite.
Abstract: Given the important aspects of wound healing approaches, in this work, an innovative biocompatible nanobiocomposite scaffold was designed and prepared based on cross-linked lignin–agarose hydrogel, extracted silk fibroin solution, and zinc chromite (ZnCr2O4) nanoparticles. Considering the cell viability technique, red blood cell hemolysis in addition to anti-biofilm assays, it was determined that after three days, the toxicity of the cross-linked lignin–agarose/SF/ZnCr2O4 nanobiocomposite was less than 13%. Moreover, the small hemolytic effect (1.67%) and high level of prevention in forming a P. aeruginosa biofilm with low OD value (0.18) showed signs of considerable hemocompatibility and antibacterial activity. Besides, according to an in vivo assay study, the wounds of mice treated with the cross-linked lignin–agarose/SF/ZnCr2O4 nanobiocomposite scaffold were almost completely healed in five days. Aside from these biological tests, the structural features were evaluated by FT-IR, EDX, FE-SEM, and TG analyses, as well as swelling ratio, rheological, and compressive mechanical study tests. Additionally, it was concluded that adding silk fibroin and ZnCr2O4 nanoparticles could enhance the mechanical tensile properties of cross-linked lignin–agarose hydrogel, and also an elastic network was characterized for this designed nanobiocomposite.

Journal ArticleDOI
TL;DR: In this article, a review of coir fiber and associated composites along with their feasible fabrication methods and surface treatments in terms of their morphological, thermal, mechanical, and physical properties is presented.
Abstract: The coconut (Cocos nucifera) fruits are extensively grown in tropical countries. The use of coconut husk-derived coir fiber-reinforced biocomposites is on the rise nowadays due to the constantly increasing demand for sustainable, renewable, biodegradable, and recyclable materials. Generally, the coconut husk and shells are disposed of as waste materials; however, they can be utilized as prominent raw materials for environment-friendly biocomposite production. Coir fibers are strong and stiff, which are prerequisites for coir fiber-reinforced biocomposite materials. However, as a bio-based material, the produced biocomposites have various performance characteristics because of the inhomogeneous coir material characteristics. Coir materials are reinforced with different thermoplastic, thermosetting, and cement-based materials to produce biocomposites. Coir fiber-reinforced composites provide superior mechanical, thermal, and physical properties, which make them outstanding materials as compared to synthetic fiber-reinforced composites. However, the mechanical performances of coconut fiber-reinforced composites could be enhanced by pretreating the surfaces of coir fiber. This review provides an overview of coir fiber and the associated composites along with their feasible fabrication methods and surface treatments in terms of their morphological, thermal, mechanical, and physical properties. Furthermore, this study facilitates the industrial production of coir fiber-reinforced biocomposites through the efficient utilization of coir husk-generated fibers.

Journal ArticleDOI
TL;DR: The Sonogashira reaction is a cross-coupling reaction of a vinyl or aryl halide with a terminal alkyne to form a C-C bond as mentioned in this paper.
Abstract: The Sonogashira reaction is a cross-coupling reaction of a vinyl or aryl halide with a terminal alkyne to form a C–C bond. In its original form, the Sonogashira reaction is performed with a palladium species as a catalyst while co-catalyzed by a copper species and a phosphine or amine. The reaction is conducted under mild conditions, i.e., room temperature, aqueous solutions, and the presence of mild bases. Undeniably, the Sonogashira reaction is among the most competent and efficient reactions widely used in organic synthesis. This named reaction has proved useful in many organic synthesis areas, including the synthesis of pharmaceuticals, heterocycles, natural products, organic compounds, complex molecules having biological activities, nanomaterials, and many more materials that we use in our daily lives. The presence of transition metals as a catalyst was indeed essential in the Sonogashira reaction. However, recently, the reaction has been successfully conducted without copper as a co-catalyst and phosphines or amines as bases. In this critical review, we have focused on developments in the Sonogashira reaction successfully performed in the absence of copper complexes, phosphines or amines, which could be of particular advantage in implementing green chemistry principles and making the reactions more achievable from an economic viewpoint.

Journal ArticleDOI
TL;DR: 22 FDA-approved glucocorticoids were identified through in silico (molecular docking) studies as the potential inhibitors of COVID-19's main protease and two electron-rich sites on ciclesonide where binding interactions with the main prote enzyme and cleavage of the prodrug to the active metabolite take place are revealed.
Abstract: The global breakout of COVID-19 and raised death toll has prompted scientists to develop novel drugs capable of inhibiting SARS-CoV-2. Conducting studies on repurposing some FDA-approved glucocorticoids can be a promising prospective for finding a treatment for COVID-19. In addition, the use of anti-inflammatory drugs, such as glucocorticoids, is a pivotal step in the treatment of critical cases of COVID-19, as they can provoke an inflammatory cytokine storm, damaging lungs. In this study, 22 FDA-approved glucocorticoids were identified through in silico (molecular docking) studies as the potential inhibitors of COVID-19's main protease. From tested compounds, ciclesonide 11, dexamethasone 2, betamethasone 1, hydrocortisone 4, fludrocortisone 3, and triamcinolone 8 are suggested as the most potent glucocorticoids active against COVID-19's main protease. Moreover, molecular dynamics simulations followed by the calculations of the binding free energy using MM-GBSA were carried out for the aforementioned promising candidate-screened glucocorticoids. In addition, quantum chemical calculations revealed two electron-rich sites on ciclesonide where binding interactions with the main protease and cleavage of the prodrug to the active metabolite take place. Our results have ramifications for conducting preclinical and clinical studies on promising glucocorticoids to hasten the development of effective therapeutics against COVID-19. Another advantage is that some glucocorticoids can be prioritized over others for the treatment of inflammation accompanying COVID-19.

Journal ArticleDOI
TL;DR: In this article, a 3D flower-like TiO2/TiOF2 was synthesized by a one-step hydrothermal method and the results showed that the removal efficiency of the photocatalyst for the adsorption and photocatalytic degradation of TCH was higher than that of the single TiO 2, TiOF2, and Degussa P25.
Abstract: A kind of high-efficiency photocatalyst of the three-dimensional flower-like TiO2/TiOF2 was synthesized by a one-step hydrothermal method. XRD, FE-SEM, EDS, HTEM, BET, XPS, PL, and UV-Vis-DRS were utilized to characterize the photocatalyst. The photocatalyst of TiO2/TiOF2 shows a narrow band gap of 2.8 eV. The generation of Ti3+ and an oxygen vacancy (Ov) in the photocatalyst are helpful to increase the absorption of visible light, and to inhibit faster charge recombination by capturing photogenerated carriers. Through the degradation of tetracycline hydrochloride (TCH) under simulated sunlight, the photocatalytic activity and stability of the synthesized samples were investigated. The results showed that the removal rate of tetracycline hydrochloride was 59% only in 0.5 h of dark reaction and 85% in 0.5 h of simulated sunlight. The removal efficiency of the photocatalyst for the adsorption and photocatalytic degradation of TCH is higher than that of the single TiO2, TiOF2, and Degussa P25. The synthesized three-dimensional flower-like TiO2/TiOF2 has great application potential in the treatment of antibiotic wastewater.

Journal ArticleDOI
TL;DR: A review of the most recent developments regarding nanocellulose as an adsorbent for chemical contamination remediation is presented in this article, where the authors highlight the recent advancements regarding the modification of nanocellulate to enhance its adsorption efficiency towards heavy metals, dyes and organic oils.
Abstract: Chemical contaminants such as heavy metals, dyes, and organic oils seriously affect the environment and threaten human health. About 2 million tons of waste is released every day into the water system. Heavy metals are the largest contributor which cover about 31% of the total composition of water contaminants. Every day, approximately 14 000 people die due to environmental exposure to selected chemicals. Removal of these contaminants down to safe levels is expensive, high energy and unsustainable by current approaches such as oxidation, biodegradation, photocatalysis, precipitation, reverse osmosis and adsorption. A combination of biosorption and nanotechnology offers a new way to remediate these chemical contaminants. Nanostructured materials are proven to have higher adsorption capacities than the same material in its larger-scale form. Nanocellulose is very promising as a high-performance bioadsorbent due to its interesting characteristics of high adsorption capacity, high mechanical strength, hydrophilic surface chemistry, renewability and biodegradability. It has been proven to have higher adsorption capacity and better binding affinity than other similar materials at the macroscale. The high specific surface area and abundance of hydroxyl groups within lead to the possible functionalization of this material for decontamination purposes. Several research papers have shown the effectiveness of nanocellulose in the remediation of chemical contaminants. This review aims to provide an overview of the most recent developments regarding nanocellulose as an adsorbent for chemical contamination remediation. Recent advancements regarding the modification of nanocellulose to enhance its adsorption efficiency towards heavy metals, dyes and organic oils were highlighted. Moreover, the desorption capability and environmental issue related to every developed nanocellulose-based adsorbent were also tackled.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the various techniques of immobilizing a photocatalyst into and onto the polymer membrane for pollutant removal and as a problem solver in handling suspended photocatalytic issues from the previous literature.
Abstract: This article reviews the various techniques of immobilizing a photocatalyst into and onto the polymer membrane for pollutant removal and as a problem solver in handling suspended photocatalyst issues from the previous literature A particular focus is given to the preparation of mixed matrix membranes and deposition techniques for photocatalytic degradation in applications for wastewater treatment Advantages and disadvantages in this application are evaluated Various operating conditions during the process are presented About 90 recently published studies (2008–2020) are reviewed From the literature, it was found that TiO2 is the most favoured photocatalyst that is frequently used in photocatalytic water treatment Dry–wet co-spinning and sputtering techniques emerged as the promising technique for immobilizing a uniformly distributed photocatalyst within the polymeric membrane, and exhibited excellence pollutant removal In general, the technical applicability is the key factor in selecting the best photocatalyst immobilizing technique for water treatment Finally, the scope of various techniques that have been reviewed may provide potential for future photocatalytic study

Journal ArticleDOI
TL;DR: The importance of the experimental conditions currently employed and how they bear little resemblance to real-world conditions are outlined, calling for an update to industrial standard tests.
Abstract: From its uses in ancient civilisations, copper has an established history as an antimicrobial agent. Extensive research has determined the efficacy and mechanism of copper's antimicrobial activity against microorganisms. The process is multifaceted with the main mechanism of bactericidal activity being the generation of reactive oxygen species (ROS), which irreversibly damages membranes. Copper ions released from surfaces lead to RNA degradation and membrane disruption of enveloped viruses. For fungi, the mechanism involves the physical deterioration of the membrane and copper ion influx. Due to variations in the experimental parameters, it is difficult to compare studies directly. In this review article, we outline the importance of the experimental conditions currently employed and how they bear little resemblance to real-world conditions. We endorse previous recommendations calling for an update to industrial standard tests.

Journal ArticleDOI
TL;DR: In this paper, the authors outline the mechanisms involved in proton conduction in Proton exchange membrane (PEM) and the significant requirements of PEMs for PEMFCs.
Abstract: Proton-exchange membrane fuel cells (PEMFCs) have received great attention as a potential alternative energy device for internal combustion engines due to their high conversion efficiency compared to other fuel cells. The main hindrance for the wide commercial adoption of PEMFCs is the high cost, low proton conductivity, and high fuel permeability of the state-of-the-art Nafion membrane. Typically, to improve the Nafion membrane, a wide range of strategies have been developed, in which efforts on the incorporation of carbon nanomaterial (CN)-based fillers are highly imperative. Even though many research endeavors have been achieved in relation to CN-based fillers applicable for Nafion, still their collective summary has rarely been reported. This review aims to outline the mechanisms involved in proton conduction in proton-exchange membranes (PEMs) and the significant requirements of PEMs for PEMFCs. This review also emphasizes the improvements achieved in the proton conductivity, fuel barrier properties, and PEMFC performance of Nafion membranes by incorporating carbon nanotubes, graphene oxide, and fullerene as additives.

Journal ArticleDOI
TL;DR: In this review promising targets for drug development against SARS-CoV-2 and anti-viral activities of some of the known natural products are discussed.
Abstract: At the end of 2019, a life threatening viral infection (COVID-19) caused by a novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was reported. This virus has spread worldwide in a short duration and forced the world to face unprecedented life and economic loss. To date, there are no known specific drugs to combat this virus and the process for new drug development is lengthy. Most promising candidates, which emerged as potential leads, were abandoned in the later phases of clinical trials. Repurposing of already approved drugs for other therapeutic applications can be done only after extensive testing for safety and efficacy. With no definite therapeutics in the horizon, natural products are in extensive use arbitrarily as anti-viral agents and immune boosters. For ages it has been known that most natural products possess potent anti-viral activity and it is no different for SARS-CoV-2. It has been shown that natural products display inhibitory effects on MERS-CoV and SARS-CoV infections. In silico studies have shown that various natural products have strong binding affinity for and inhibitory action on the non-structural proteins of the virus, namely PLPRO, MPRO, and RdRp, and structural proteins such as spike (S) protein. Since the virus utilizes the transmembrane ACE2 receptor of the host cell, it also proves to be a valid target for drug development. In this review promising targets for drug development against SARS-CoV-2 and anti-viral activities of some of the known natural products are discussed.

Journal ArticleDOI
TL;DR: In this paper, a hybrid system's efficiency of three-dimensional electrochemical (3DE) process and a moving bed biofilm reactor (MBBR) in removing 2,4-D herbicides from aqueous solutions was investigated.
Abstract: 2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide that is considered as a carcinogenic and highly toxic contaminant, and due to its biological and chemical stability, its degradation is very difficult. Therefore, this study aimed to investigate a hybrid system's efficiency of three-dimensional electrochemical (3DE) process and a moving bed biofilm reactor (MBBR) in removing 2,4-D herbicides from aqueous solutions. In this experimental study, the electrochemical degradation of 2,4-D herbicide in a 3DE process with a G/β-PbO2 anode was first investigated as a pretreatment process. Then, in the post-treatment stage, MBBR with continuous flow was used. The amount of aeration in the MBBR reactor was 4 L min−1, and the amount of dissolved oxygen (DO) was in the range of 3–5 mg L−1. The effect of various parameters such as hydraulic retention time (HRT) and filling ratio were investigated. The amount of sewage injection was set between 0.001–0.004 L min−1. Routine microbiological biochemical tests were used to detect bacteria. BOD5/COD, COD/TOC, AOS, and COS ratio parameters were used to determine the biodegradability of 2.4-D due to the effluent of the 3DE process. The results showed that with increasing current density, decreasing pH, decreasing herbicide concentration and increasing electrolysis time, the herbicide degradation efficiency increased by 3DE pretreatment process. Based on the results of MBBR post-treatment process efficiency, with increasing HRT and filling ratio, the herbicide removal efficiency increased. According to the results, the highest removal efficiencies of 2,4-D and COD herbicides were obtained during HRT of 24 h, and the filling ratio of 70% were 97.33% and 88.95%, respectively. The consortium of 2,4-D degrading bacteria identified in this study included E. coli, Enterobacter spp., Bacillus spp., Alcaligenes spp., Proteus spp., Acinetobacter spp., Pseudomonas spp., Arthrobacter, and Brevundimonas vesicularis. In the MBBR biological process, the reaction kinetics followed the Grau second-order model (R2 = 0.98). In general, the results showed that the combined process of 3DE with G/β-PbO2 anode and MBBR biological process has relatively high efficiency in 2,4-D herbicide degradation and can be used as a suitable complementary treatment method in wastewater containing non-degradable compounds such as phenoxy herbicides, e.g., 2,4-D should be used.