scispace - formally typeset
Open AccessJournal ArticleDOI

A Double-Negative Feedback Loop between ZEB1-SIP1 and the microRNA-200 Family Regulates Epithelial-Mesenchymal Transition

TLDR
A double-negative feedback loop controlling ZEB1-SIP1 and miR-200 family expression that regulates cellular phenotype is established and has direct relevance to the role of these factors in tumor progression.
Abstract
Epithelial to mesenchymal transition occurs during embryologic development to allow tissue remodeling and is proposed to be a key step in the metastasis of epithelial-derived tumors. The miR-200 family of microRNAs plays a major role in specifying the epithelial phenotype by preventing expression of the transcription repressors, ZEB1/deltaEF1 and SIP1/ZEB2. We show here that miR-200a, miR-200b, and the related miR-429 are all encoded on a 7.5-kb polycistronic primary miRNA (pri-miR) transcript. We show that the promoter for the pri-miR is located within a 300-bp segment located 4 kb upstream of miR-200b. This promoter region is sufficient to confer expression in epithelial cells and is repressed in mesenchymal cells by ZEB1 and SIP1 through their binding to a conserved pair of ZEB-type E-box elements located proximal to the transcription start site. These findings establish a double-negative feedback loop controlling ZEB1-SIP1 and miR-200 family expression that regulates cellular phenotype and has direct relevance to the role of these factors in tumor progression.

read more

Citations
More filters
Journal ArticleDOI

Molecular mechanisms of epithelial–mesenchymal transition

TL;DR: The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues, and the convergence of signalling pathways is essential for EMT.
Journal ArticleDOI

Biogenesis of small RNAs in animals.

TL;DR: This Review summarizes the current knowledge of how these intriguing molecules are generated in animal cells.
Journal ArticleDOI

MicroRNAs in cancer.

TL;DR: In this paper, the effects of miRNA dysregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies are discussed.
Journal ArticleDOI

MicroRNA biogenesis pathways in cancer

TL;DR: Global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic, highlighting the importance of miRNA dysregulation in cancer.
References
More filters
Journal ArticleDOI

MicroRNAs: Genomics, Biogenesis, Mechanism, and Function

TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
Journal ArticleDOI

The hallmarks of cancer.

TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.
Journal ArticleDOI

Epithelial–mesenchymal transitions in tumour progression

TL;DR: Epithelial–mesenchymal transition provides a new basis for understanding the progression of carcinoma towards dedifferentiated and more malignant states.
Journal ArticleDOI

MicroRNA genes are transcribed by RNA polymerase II.

TL;DR: The first direct evidence that miRNA genes are transcribed by RNA polymerase II (pol II) is presented and the detailed structure of a miRNA gene is described, for the first time, by determining the promoter and the terminator of mir‐23a∼27a‐24‐2.
Journal ArticleDOI

Silencing of microRNAs in vivo with ‘antagomirs’

TL;DR: It is shown that a novel class of chemically engineered oligonucleotides, termed ‘antagomirs’, are efficient and specific silencers of endogenous miRNA levels in mice and may represent a therapeutic strategy for silencing miRNAs in disease.
Related Papers (5)