scispace - formally typeset
Journal ArticleDOI

A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study

Reads0
Chats0
TLDR
A radiomic signature predictive of immunotherapy response by combining contrast-enhanced CT images and RNA-seq genomic data from tumour biopsies to assess CD8 cell tumour infiltration was developed and validated.
Abstract
Summary Background Because responses of patients with cancer to immunotherapy can vary in success, innovative predictors of response to treatment are urgently needed to improve treatment outcomes. We aimed to develop and independently validate a radiomics-based biomarker of tumour-infiltrating CD8 cells in patients included in phase 1 trials of anti-programmed cell death protein (PD)-1 or anti-programmed cell death ligand 1 (PD-L1) monotherapy. We also aimed to evaluate the association between the biomarker, and tumour immune phenotype and clinical outcomes of these patients. Methods In this retrospective multicohort study, we used four independent cohorts of patients with advanced solid tumours to develop and validate a radiomic signature predictive of immunotherapy response by combining contrast-enhanced CT images and RNA-seq genomic data from tumour biopsies to assess CD8 cell tumour infiltration. To develop the radiomic signature of CD8 cells, we used the CT images and RNA sequencing data of 135 patients with advanced solid malignant tumours who had been enrolled into the MOSCATO trial between May 1, 2012, and March 31, 2016, in France (training set). The genomic data, which are based on the CD8B gene, were used to estimate the abundance of CD8 cells in the samples and data were then aligned with the images to generate the radiomic signatures. The concordance of the radiomic signature (primary endpoint) was validated in a Cancer Genome Atlas [TGCA] database dataset including 119 patients who had available baseline preoperative imaging data and corresponding transcriptomic data on June 30, 2017. From 84 input variables used for the machine-learning method (78 radiomic features, five location variables, and one technical variable), a radiomics-based predictor of the CD8 cell expression signature was built by use of machine learning (elastic-net regularised regression method). Two other independent cohorts of patients with advanced solid tumours were used to evaluate this predictor. The immune phenotype internal cohort (n=100), were randomly selected from the Gustave Roussy Cancer Campus database of patient medical records based on previously described, extreme tumour-immune phenotypes: immune-inflamed (with dense CD8 cell infiltration) or immune-desert (with low CD8 cell infiltration), irrespective of treatment delivered; these data were used to analyse the correlation of the immune phenotype with this biomarker. Finally, the immunotherapy-treated dataset (n=137) of patients recruited from Dec 1, 2011, to Jan 31, 2014, at the Gustave Roussy Cancer Campus, who had been treated with anti-PD-1 and anti-PD-L1 monotherapy in phase 1 trials, was used to assess the predictive value of this biomarker in terms of clinical outcome. Findings We developed a radiomic signature for CD8 cells that included eight variables, which was validated with the gene expression signature of CD8 cells in the TCGA dataset (area under the curve [AUC]=0·67; 95% CI 0·57–0·77; p=0·0019). In the cohort with assumed immune phenotypes, the signature was also able to discriminate inflamed tumours from immune-desert tumours (0·76; 0·66–0·86; p Interpretation The radiomic signature of CD8 cells was validated in three independent cohorts. This imaging predictor provided a promising way to predict the immune phenotype of tumours and to infer clinical outcomes for patients with cancer who had been treated with anti-PD-1 and PD-L1. Our imaging biomarker could be useful in estimating CD8 cell count and predicting clinical outcomes of patients treated with immunotherapy, when validated by further prospective randomised trials. Funding Fondation pour la Recherche Medicale, and SIRIC-SOCRATE 2.0, French Society of Radiation Oncology.

read more

Citations
More filters
Journal ArticleDOI

The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping

Alex Zwanenburg, +70 more
- 01 May 2020 - 
TL;DR: A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software and could be excellently reproduced.
Journal ArticleDOI

Neoadjuvant checkpoint blockade for cancer immunotherapy

TL;DR: The development of neoadjuvant immunotherapies in the era of PD-1 pathway blockade is focused on, highlighting particular considerations for immunological mechanisms, clinical development, and pathologic response assessments.
Journal ArticleDOI

The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges.

TL;DR: The recent methodological developments in radiomics are reviewed, including data acquisition, tumor segmentation, feature extraction, and modelling, as well as the rapidly developing deep learning technology.
References
More filters
Journal ArticleDOI

Regularization and variable selection via the elastic net

TL;DR: It is shown that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation, and an algorithm called LARS‐EN is proposed for computing elastic net regularization paths efficiently, much like algorithm LARS does for the lamba.
Journal ArticleDOI

Salmon provides fast and bias-aware quantification of transcript expression

TL;DR: Salmon is the first transcriptome-wide quantifier to correct for fragment GC-content bias, which substantially improves the accuracy of abundance estimates and the sensitivity of subsequent differential expression analysis.
Journal ArticleDOI

The cancer genome atlas pan-cancer analysis project

John N. Weinstein, +379 more
- 01 Oct 2013 - 
TL;DR: The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA with a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages.
Related Papers (5)