scispace - formally typeset
Open AccessJournal ArticleDOI

Clinical Applications of DNA Vaccines: Current Progress

TLDR
The ability of the current, or second-generation, DNA vaccines to induce more-potent cellular and humoral responses opens up this platform to be examined in both preventative and therapeutic arenas.
Abstract
It was discovered almost 20 years ago that plasmid DNA, when injected into the skin or muscle of mice, could induce immune responses to encoded antigens. Since that time, there has since been much progress in understanding the basic biology behind this deceptively simple vaccine platform and much technological advancement to enhance immune potency. Among these advancements are improved formulations and improved physical methods of delivery, which increase the uptake of vaccine plasmids by cells; optimization of vaccine vectors and encoded antigens; and the development of novel formulations and adjuvants to augment and direct the host immune response. The ability of the current, or second-generation, DNA vaccines to induce more-potent cellular and humoral responses opens up this platform to be examined in both preventative and therapeutic arenas. This review focuses on these advances and discusses both preventive and immunotherapeutic clinical applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Confronting the threat of SARS-CoV-2: Realities, challenges and therapeutic strategies (Review)

TL;DR: The molecular mechanisms that are responsible for SARS-CoV-2 infection are described and the progress of preclinical research into medical intervention against Sars- CoV- 2 infection are discussed.
Journal ArticleDOI

Optimizing in vivo gene transfer into mouse corpus cavernosum by use of surface electroporation.

TL;DR: The optimal electroporation conditions for maximizing gene transfer into the corpus cavernosum of mice while avoiding damage to the erectile tissue are established and will be a valuable tool for gene therapy in the field of erectile dysfunction.
Journal ArticleDOI

Tomorrow's vector vaccines for small ruminants.

TL;DR: New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants and examples of vaccines that have been tested against important diseases of sheep and goats are offered.
References
More filters
Journal ArticleDOI

Heterologous protection against influenza by injection of DNA encoding a viral protein

TL;DR: To generate a viral antigen for presentation to the immune system without the limitations of direct peptide delivery or viral vectors, plasmid DNA encoding influenza A nucleop protein was injected into the quadriceps of BALB/c mice and resulted in the generation of nucleoprotein-specific CTLs.
Journal ArticleDOI

Genetic immunization is a simple method for eliciting an immune response.

TL;DR: It is reported that an immune response can be elicited by introducing the gene encoding a protein directly into the skin of mice by using a hand-held form of the biolistic system.
Journal ArticleDOI

DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations

TL;DR: By far the most efficient DNA immunizations were achieved by using a gene gun to deliver DNA-coated gold beads to the epidermis, and 95% protection was achieved by two immunizations with beads loaded with as little as 0.4 micrograms of DNA.
Related Papers (5)